Cargando…

PSoC-Stat: A single chip open source potentiostat based on a Programmable System on a Chip

In this paper we demonstrate a potentiostat built with a single commercially available integrated circuit (IC) that does not require any external electronic components to perform electrochemical experiments. This is done using the capabilities of the Programmable System on a Chip (PSoC(®)) by Cypres...

Descripción completa

Detalles Bibliográficos
Autores principales: Lopin, Prattana, Lopin, Kyle V.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6059476/
https://www.ncbi.nlm.nih.gov/pubmed/30044878
http://dx.doi.org/10.1371/journal.pone.0201353
Descripción
Sumario:In this paper we demonstrate a potentiostat built with a single commercially available integrated circuit (IC) that does not require any external electronic components to perform electrochemical experiments. This is done using the capabilities of the Programmable System on a Chip (PSoC(®)) by Cypress Semiconductor, which integrates all of the necessary electrical components. This is in contrast to other recent papers that have developed potentiostats but require technical skills or specialized equipment to produce. This eliminates the process of having to make a printed circuit board and soldering on electronic components. To control the device, a graphical user interface (GUI) was developed in the python programming language. Python is open source, with a style that makes it easy to read and write programs, making it an ideal choice for open source projects. As the developed device is open source and based on a PSoC, modification to implement other electrochemical techniques is straightforward and only requires modest programming skills, but no expensive equipment or difficult techniques. The potentiostat developed here adds to the growing amount of open source laboratory equipment. To demonstrate the PSoC potentiostat in a wide range of applications, we performed cyclic voltammetry (to measure vitamin C concentration in orange juice), amperometry (to measure glucose with a glucose strip), and stripping voltammetry experiments (to measure lead in water). The device was able to perform all experiments and could accurately measure Vitamin C, glucose, and lead.