Cargando…

Cerebral blood perfusion deficits using dynamic susceptibility contrast MRI with gadolinium chelates in rats with post-ischemic reperfusion without significant dynamic contrast-enhanced MRI-derived vessel permeabilities: A cautionary note

In this study, we quantified perfusion deficits using dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) with an extravasating contrast agent (CA). We also investigated the efficacy of leakage compensation from CA pre-load in brains from post-ischemic rat models without significant...

Descripción completa

Detalles Bibliográficos
Autores principales: Jin, Seokha, Kang, MungSoo, Cho, HyungJoon
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6059480/
https://www.ncbi.nlm.nih.gov/pubmed/30044884
http://dx.doi.org/10.1371/journal.pone.0201076
_version_ 1783341870961655808
author Jin, Seokha
Kang, MungSoo
Cho, HyungJoon
author_facet Jin, Seokha
Kang, MungSoo
Cho, HyungJoon
author_sort Jin, Seokha
collection PubMed
description In this study, we quantified perfusion deficits using dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) with an extravasating contrast agent (CA). We also investigated the efficacy of leakage compensation from CA pre-load in brains from post-ischemic rat models without significant dynamic contrast-enhanced MRI (DCE-MRI)-derived vessel wall permeability. DSC measurements were obtained using fast (0.3 s) echo-planar imaging in both normal rats and rats with transient middle carotid artery occlusion (MCAO) (1-h MCAO, 24-h reperfusion) after successive administrations of gadoterate meglumine (Dotarem) and intravascular superparamagnetic iron oxide nanoparticles (SPION). The relative cerebral blood volume (CBV) and cerebral blood flow (CBF) values acquired using Dotarem were significantly underestimated (~20%) when compared to those acquired using SPION in ipsilesional post-ischemic brain regions. A slight overestimation of relative mean transit time was observed. Areas with underestimated CBV and CBF values from the corresponding error maps encompassed the area of infarcted tissue (apparent diffusion coefficient < 500 μm(2)/s) and mostly coincided with the area wherein conspicuous longitudinal relaxation time differences were observed pre- vs. post-injection of Dotarem. The DSC measurements with significant pre-load (0.3 mmol·kg(-1)) of Dotarem displayed minimal perfusion deficits when compared to those determined using the reference intravascular SPION.
format Online
Article
Text
id pubmed-6059480
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-60594802018-08-09 Cerebral blood perfusion deficits using dynamic susceptibility contrast MRI with gadolinium chelates in rats with post-ischemic reperfusion without significant dynamic contrast-enhanced MRI-derived vessel permeabilities: A cautionary note Jin, Seokha Kang, MungSoo Cho, HyungJoon PLoS One Research Article In this study, we quantified perfusion deficits using dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) with an extravasating contrast agent (CA). We also investigated the efficacy of leakage compensation from CA pre-load in brains from post-ischemic rat models without significant dynamic contrast-enhanced MRI (DCE-MRI)-derived vessel wall permeability. DSC measurements were obtained using fast (0.3 s) echo-planar imaging in both normal rats and rats with transient middle carotid artery occlusion (MCAO) (1-h MCAO, 24-h reperfusion) after successive administrations of gadoterate meglumine (Dotarem) and intravascular superparamagnetic iron oxide nanoparticles (SPION). The relative cerebral blood volume (CBV) and cerebral blood flow (CBF) values acquired using Dotarem were significantly underestimated (~20%) when compared to those acquired using SPION in ipsilesional post-ischemic brain regions. A slight overestimation of relative mean transit time was observed. Areas with underestimated CBV and CBF values from the corresponding error maps encompassed the area of infarcted tissue (apparent diffusion coefficient < 500 μm(2)/s) and mostly coincided with the area wherein conspicuous longitudinal relaxation time differences were observed pre- vs. post-injection of Dotarem. The DSC measurements with significant pre-load (0.3 mmol·kg(-1)) of Dotarem displayed minimal perfusion deficits when compared to those determined using the reference intravascular SPION. Public Library of Science 2018-07-25 /pmc/articles/PMC6059480/ /pubmed/30044884 http://dx.doi.org/10.1371/journal.pone.0201076 Text en © 2018 Jin et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Jin, Seokha
Kang, MungSoo
Cho, HyungJoon
Cerebral blood perfusion deficits using dynamic susceptibility contrast MRI with gadolinium chelates in rats with post-ischemic reperfusion without significant dynamic contrast-enhanced MRI-derived vessel permeabilities: A cautionary note
title Cerebral blood perfusion deficits using dynamic susceptibility contrast MRI with gadolinium chelates in rats with post-ischemic reperfusion without significant dynamic contrast-enhanced MRI-derived vessel permeabilities: A cautionary note
title_full Cerebral blood perfusion deficits using dynamic susceptibility contrast MRI with gadolinium chelates in rats with post-ischemic reperfusion without significant dynamic contrast-enhanced MRI-derived vessel permeabilities: A cautionary note
title_fullStr Cerebral blood perfusion deficits using dynamic susceptibility contrast MRI with gadolinium chelates in rats with post-ischemic reperfusion without significant dynamic contrast-enhanced MRI-derived vessel permeabilities: A cautionary note
title_full_unstemmed Cerebral blood perfusion deficits using dynamic susceptibility contrast MRI with gadolinium chelates in rats with post-ischemic reperfusion without significant dynamic contrast-enhanced MRI-derived vessel permeabilities: A cautionary note
title_short Cerebral blood perfusion deficits using dynamic susceptibility contrast MRI with gadolinium chelates in rats with post-ischemic reperfusion without significant dynamic contrast-enhanced MRI-derived vessel permeabilities: A cautionary note
title_sort cerebral blood perfusion deficits using dynamic susceptibility contrast mri with gadolinium chelates in rats with post-ischemic reperfusion without significant dynamic contrast-enhanced mri-derived vessel permeabilities: a cautionary note
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6059480/
https://www.ncbi.nlm.nih.gov/pubmed/30044884
http://dx.doi.org/10.1371/journal.pone.0201076
work_keys_str_mv AT jinseokha cerebralbloodperfusiondeficitsusingdynamicsusceptibilitycontrastmriwithgadoliniumchelatesinratswithpostischemicreperfusionwithoutsignificantdynamiccontrastenhancedmriderivedvesselpermeabilitiesacautionarynote
AT kangmungsoo cerebralbloodperfusiondeficitsusingdynamicsusceptibilitycontrastmriwithgadoliniumchelatesinratswithpostischemicreperfusionwithoutsignificantdynamiccontrastenhancedmriderivedvesselpermeabilitiesacautionarynote
AT chohyungjoon cerebralbloodperfusiondeficitsusingdynamicsusceptibilitycontrastmriwithgadoliniumchelatesinratswithpostischemicreperfusionwithoutsignificantdynamiccontrastenhancedmriderivedvesselpermeabilitiesacautionarynote