Cargando…
Cerebral blood perfusion deficits using dynamic susceptibility contrast MRI with gadolinium chelates in rats with post-ischemic reperfusion without significant dynamic contrast-enhanced MRI-derived vessel permeabilities: A cautionary note
In this study, we quantified perfusion deficits using dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) with an extravasating contrast agent (CA). We also investigated the efficacy of leakage compensation from CA pre-load in brains from post-ischemic rat models without significant...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6059480/ https://www.ncbi.nlm.nih.gov/pubmed/30044884 http://dx.doi.org/10.1371/journal.pone.0201076 |
_version_ | 1783341870961655808 |
---|---|
author | Jin, Seokha Kang, MungSoo Cho, HyungJoon |
author_facet | Jin, Seokha Kang, MungSoo Cho, HyungJoon |
author_sort | Jin, Seokha |
collection | PubMed |
description | In this study, we quantified perfusion deficits using dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) with an extravasating contrast agent (CA). We also investigated the efficacy of leakage compensation from CA pre-load in brains from post-ischemic rat models without significant dynamic contrast-enhanced MRI (DCE-MRI)-derived vessel wall permeability. DSC measurements were obtained using fast (0.3 s) echo-planar imaging in both normal rats and rats with transient middle carotid artery occlusion (MCAO) (1-h MCAO, 24-h reperfusion) after successive administrations of gadoterate meglumine (Dotarem) and intravascular superparamagnetic iron oxide nanoparticles (SPION). The relative cerebral blood volume (CBV) and cerebral blood flow (CBF) values acquired using Dotarem were significantly underestimated (~20%) when compared to those acquired using SPION in ipsilesional post-ischemic brain regions. A slight overestimation of relative mean transit time was observed. Areas with underestimated CBV and CBF values from the corresponding error maps encompassed the area of infarcted tissue (apparent diffusion coefficient < 500 μm(2)/s) and mostly coincided with the area wherein conspicuous longitudinal relaxation time differences were observed pre- vs. post-injection of Dotarem. The DSC measurements with significant pre-load (0.3 mmol·kg(-1)) of Dotarem displayed minimal perfusion deficits when compared to those determined using the reference intravascular SPION. |
format | Online Article Text |
id | pubmed-6059480 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-60594802018-08-09 Cerebral blood perfusion deficits using dynamic susceptibility contrast MRI with gadolinium chelates in rats with post-ischemic reperfusion without significant dynamic contrast-enhanced MRI-derived vessel permeabilities: A cautionary note Jin, Seokha Kang, MungSoo Cho, HyungJoon PLoS One Research Article In this study, we quantified perfusion deficits using dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) with an extravasating contrast agent (CA). We also investigated the efficacy of leakage compensation from CA pre-load in brains from post-ischemic rat models without significant dynamic contrast-enhanced MRI (DCE-MRI)-derived vessel wall permeability. DSC measurements were obtained using fast (0.3 s) echo-planar imaging in both normal rats and rats with transient middle carotid artery occlusion (MCAO) (1-h MCAO, 24-h reperfusion) after successive administrations of gadoterate meglumine (Dotarem) and intravascular superparamagnetic iron oxide nanoparticles (SPION). The relative cerebral blood volume (CBV) and cerebral blood flow (CBF) values acquired using Dotarem were significantly underestimated (~20%) when compared to those acquired using SPION in ipsilesional post-ischemic brain regions. A slight overestimation of relative mean transit time was observed. Areas with underestimated CBV and CBF values from the corresponding error maps encompassed the area of infarcted tissue (apparent diffusion coefficient < 500 μm(2)/s) and mostly coincided with the area wherein conspicuous longitudinal relaxation time differences were observed pre- vs. post-injection of Dotarem. The DSC measurements with significant pre-load (0.3 mmol·kg(-1)) of Dotarem displayed minimal perfusion deficits when compared to those determined using the reference intravascular SPION. Public Library of Science 2018-07-25 /pmc/articles/PMC6059480/ /pubmed/30044884 http://dx.doi.org/10.1371/journal.pone.0201076 Text en © 2018 Jin et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Jin, Seokha Kang, MungSoo Cho, HyungJoon Cerebral blood perfusion deficits using dynamic susceptibility contrast MRI with gadolinium chelates in rats with post-ischemic reperfusion without significant dynamic contrast-enhanced MRI-derived vessel permeabilities: A cautionary note |
title | Cerebral blood perfusion deficits using dynamic susceptibility contrast MRI with gadolinium chelates in rats with post-ischemic reperfusion without significant dynamic contrast-enhanced MRI-derived vessel permeabilities: A cautionary note |
title_full | Cerebral blood perfusion deficits using dynamic susceptibility contrast MRI with gadolinium chelates in rats with post-ischemic reperfusion without significant dynamic contrast-enhanced MRI-derived vessel permeabilities: A cautionary note |
title_fullStr | Cerebral blood perfusion deficits using dynamic susceptibility contrast MRI with gadolinium chelates in rats with post-ischemic reperfusion without significant dynamic contrast-enhanced MRI-derived vessel permeabilities: A cautionary note |
title_full_unstemmed | Cerebral blood perfusion deficits using dynamic susceptibility contrast MRI with gadolinium chelates in rats with post-ischemic reperfusion without significant dynamic contrast-enhanced MRI-derived vessel permeabilities: A cautionary note |
title_short | Cerebral blood perfusion deficits using dynamic susceptibility contrast MRI with gadolinium chelates in rats with post-ischemic reperfusion without significant dynamic contrast-enhanced MRI-derived vessel permeabilities: A cautionary note |
title_sort | cerebral blood perfusion deficits using dynamic susceptibility contrast mri with gadolinium chelates in rats with post-ischemic reperfusion without significant dynamic contrast-enhanced mri-derived vessel permeabilities: a cautionary note |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6059480/ https://www.ncbi.nlm.nih.gov/pubmed/30044884 http://dx.doi.org/10.1371/journal.pone.0201076 |
work_keys_str_mv | AT jinseokha cerebralbloodperfusiondeficitsusingdynamicsusceptibilitycontrastmriwithgadoliniumchelatesinratswithpostischemicreperfusionwithoutsignificantdynamiccontrastenhancedmriderivedvesselpermeabilitiesacautionarynote AT kangmungsoo cerebralbloodperfusiondeficitsusingdynamicsusceptibilitycontrastmriwithgadoliniumchelatesinratswithpostischemicreperfusionwithoutsignificantdynamiccontrastenhancedmriderivedvesselpermeabilitiesacautionarynote AT chohyungjoon cerebralbloodperfusiondeficitsusingdynamicsusceptibilitycontrastmriwithgadoliniumchelatesinratswithpostischemicreperfusionwithoutsignificantdynamiccontrastenhancedmriderivedvesselpermeabilitiesacautionarynote |