Cargando…
MEF2-activated long non-coding RNA PCGEM1 promotes cell proliferation in hormone-refractory prostate cancer through downregulation of miR-148a
Prostate cancer gene expression marker 1 (PCGEM1) is a prostate-specific gene overexpressed in prostate cancer cells that promotes cell proliferation. To study the molecular mechanism of PCGEM1 function in hormone-refractory prostate cancer, the interaction between myocyte enhancer factor 2 (MEF2) a...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6059670/ https://www.ncbi.nlm.nih.gov/pubmed/29749452 http://dx.doi.org/10.3892/mmr.2018.8977 |
Sumario: | Prostate cancer gene expression marker 1 (PCGEM1) is a prostate-specific gene overexpressed in prostate cancer cells that promotes cell proliferation. To study the molecular mechanism of PCGEM1 function in hormone-refractory prostate cancer, the interaction between myocyte enhancer factor 2 (MEF2) and PCGEM1 was assessed by a luciferase reporter assay and chromatin immunoprecipitation (ChIP) assay. In addition, the underlying mechanism of PCGEM1 regulating expression of microRNA (miR)-148a in PC3 prostate cancer cells was evaluated. Relative expression levels were measured by reverse transcription-quantitative polymerase chain reaction, and early apoptosis was measured by flow cytometry. PCGEM1 was demonstrated to be overexpressed in prostate cancer tissues compared with noncancerous tissues. Expression levels of PCGEM1 in PC3 cancer cells were demonstrated to be regulated by MEF2, as PCGME1 mRNA was increased by MEF2 overexpression but decreased by MEF2 silencing. MEF2 was also demonstrated to enhance the activity of PCGEM1 promoter and thus promote PCGEM1 transcription. In addition, downregulation of PCGEM1 expression in PC3 cells increased expression of miR-148a. By contrast, overexpression of PCGEM1 decreased miR-148a expression. Finally, PCGME1 silencing by small interfering RNA significantly induced early cell apoptosis but this effect was reduced by a miR-148a inhibitor. In conclusion, the present study demonstrated a positive regulatory association between MEF2 and PCGEM1, and a reciprocal negative regulatory association between PCGEM1 and miR-148a that controls cell apoptosis. The present study, therefore, provides new insights into the mechanism of PCGEM1 function in prostate cancer development. |
---|