Cargando…
Deep reinforcement learning for de novo drug design
We have devised and implemented a novel computational strategy for de novo design of molecules with desired properties termed ReLeaSE (Reinforcement Learning for Structural Evolution). On the basis of deep and reinforcement learning (RL) approaches, ReLeaSE integrates two deep neural networks—genera...
Autores principales: | Popova, Mariya, Isayev, Olexandr, Tropsha, Alexander |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6059760/ https://www.ncbi.nlm.nih.gov/pubmed/30050984 http://dx.doi.org/10.1126/sciadv.aap7885 |
Ejemplares similares
-
Generative and reinforcement learning approaches for the automated de novo design of bioactive compounds
por: Korshunova, Maria, et al.
Publicado: (2022) -
Molecular de-novo design through deep reinforcement learning
por: Olivecrona, Marcus, et al.
Publicado: (2017) -
Universal fragment descriptors for predicting properties of inorganic crystals
por: Isayev, Olexandr, et al.
Publicado: (2017) -
Universal Approach
to De Novo Drug Design for Target
Proteins Using Deep Reinforcement Learning
por: Zhang, Yunjiang, et al.
Publicado: (2023) -
Optimizing blood–brain barrier permeation through deep reinforcement learning for de novo drug design
por: Pereira, Tiago, et al.
Publicado: (2021)