Cargando…

High-dimensional entanglement between distant atomic-ensemble memories

Entangled quantum states in high-dimensional space show many advantages compared with entangled states in two-dimensional space. The former enable quantum communication with higher channel capacity, enable more efficient quantum-information processing and are more feasible for closing the detection...

Descripción completa

Detalles Bibliográficos
Autores principales: Ding, Dong-Sheng, Zhang, Wei, Shi, Shuai, Zhou, Zhi-Yuan, Li, Yan, Shi, Bao-Sen, Guo, Guang-Can
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6059826/
https://www.ncbi.nlm.nih.gov/pubmed/30167124
http://dx.doi.org/10.1038/lsa.2016.157
Descripción
Sumario:Entangled quantum states in high-dimensional space show many advantages compared with entangled states in two-dimensional space. The former enable quantum communication with higher channel capacity, enable more efficient quantum-information processing and are more feasible for closing the detection loophole in Bell test experiments. Establishing high-dimensional entangled memories is essential for long-distance communication, but its experimental realization is lacking. We experimentally established high-dimensional entanglement in orbital angular momentum space between two atomic ensembles separated by 1 m. We reconstructed the density matrix for a three-dimensional entanglement and obtained an entanglement fidelity of (83.9±2.9)%. More importantly, we confirmed the successful preparation of a state entangled in more than three-dimensional space (up to seven-dimensional) using entanglement witnesses. Achieving high-dimensional entanglement represents a significant step toward a high-capacity quantum network.