Cargando…
Phase recovery and holographic image reconstruction using deep learning in neural networks
Phase recovery from intensity-only measurements forms the heart of coherent imaging techniques and holography. In this study, we demonstrate that a neural network can learn to perform phase recovery and holographic image reconstruction after appropriate training. This deep learning-based approach pr...
Autores principales: | Rivenson, Yair, Zhang, Yibo, Günaydın, Harun, Teng, Da, Ozcan, Aydogan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6060068/ https://www.ncbi.nlm.nih.gov/pubmed/30839514 http://dx.doi.org/10.1038/lsa.2017.141 |
Ejemplares similares
-
Sparsity-based multi-height phase recovery in holographic microscopy
por: Rivenson, Yair, et al.
Publicado: (2016) -
PhaseStain: the digital staining of label-free quantitative phase microscopy images using deep learning
por: Rivenson, Yair, et al.
Publicado: (2019) -
Classification and reconstruction of spatially overlapping phase images using diffractive optical networks
por: Mengu, Deniz, et al.
Publicado: (2022) -
Deep learning in holography and coherent imaging
por: Rivenson, Yair, et al.
Publicado: (2019) -
Deep learning accelerates whole slide imaging for next-generation digital pathology applications
por: Rivenson, Yair, et al.
Publicado: (2022)