Cargando…

The genomics of insecticide resistance: insights from recent studies in African malaria vectors

Over 80% of the world's population is at risk from arthropod-vectored diseases, and arthropod crop pests are a significant threat to food security. Insecticides are our front-line response for controlling these disease vectors and pests, and consequently the increasing prevalence of insecticide...

Descripción completa

Detalles Bibliográficos
Autores principales: Clarkson, Chris S, Temple, Helen J, Miles, Alistair
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6060083/
https://www.ncbi.nlm.nih.gov/pubmed/30025626
http://dx.doi.org/10.1016/j.cois.2018.05.017
Descripción
Sumario:Over 80% of the world's population is at risk from arthropod-vectored diseases, and arthropod crop pests are a significant threat to food security. Insecticides are our front-line response for controlling these disease vectors and pests, and consequently the increasing prevalence of insecticide resistance is of global concern. Here we provide a brief overview of how genomics can be used to implement effective insecticide resistance management (IRM), with a focus on recent advances in the study of Anopheles gambiae, the major vector of malaria in Africa. These advances unlock the potential for a predictive form of IRM, allowing tractable feedback for stakeholders, where the latest field data and well parameterised models can maximise the lifetime and effectiveness of available insecticides.