Cargando…
Modern Machine Learning as a Benchmark for Fitting Neural Responses
Neuroscience has long focused on finding encoding models that effectively ask “what predicts neural spiking?” and generalized linear models (GLMs) are a typical approach. It is often unknown how much of explainable neural activity is captured, or missed, when fitting a model. Here we compared the pr...
Autores principales: | Benjamin, Ari S., Fernandes, Hugo L., Tomlinson, Tucker, Ramkumar, Pavan, VerSteeg, Chris, Chowdhury, Raeed H., Miller, Lee E., Kording, Konrad P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6060269/ https://www.ncbi.nlm.nih.gov/pubmed/30072887 http://dx.doi.org/10.3389/fncom.2018.00056 |
Ejemplares similares
-
Machine Learning for Neural Decoding
por: Glaser, Joshua I., et al.
Publicado: (2020) -
Premotor and Motor Cortices Encode Reward
por: Ramkumar, Pavan, et al.
Publicado: (2016) -
Neural Networks for Modeling Neural Spiking in S1 Cortex
por: Lucas, Alice, et al.
Publicado: (2019) -
Multitask learning and benchmarking with clinical time series data
por: Harutyunyan, Hrayr, et al.
Publicado: (2019) -
Uncertainty leads to persistent effects on reach representations in dorsal premotor cortex
por: Dekleva, Brian M, et al.
Publicado: (2016)