Cargando…
Epileptic Seizure Prediction Based on Permutation Entropy
Epilepsy is a chronic non-communicable disorder of the brain that affects individuals of all ages. It is caused by a sudden abnormal discharge of brain neurons leading to temporary dysfunction. In this regard, if seizures could be predicted a reasonable period of time before their occurrence, epilep...
Autores principales: | Yang, Yanli, Zhou, Mengni, Niu, Yan, Li, Conggai, Cao, Rui, Wang, Bin, Yan, Pengfei, Ma, Yao, Xiang, Jie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6060283/ https://www.ncbi.nlm.nih.gov/pubmed/30072886 http://dx.doi.org/10.3389/fncom.2018.00055 |
Ejemplares similares
-
Epileptic Seizure Detection Based on EEG Signals and CNN
por: Zhou, Mengni, et al.
Publicado: (2018) -
A Novel Permutation Entropy-Based EEG Channel Selection for Improving Epileptic Seizure Prediction
por: Ra, Jee S., et al.
Publicado: (2021) -
Permutation Entropy-Based Interpretability of Convolutional Neural Network Models for Interictal EEG Discrimination of Subjects with Epileptic Seizures vs. Psychogenic Non-Epileptic Seizures
por: Lo Giudice, Michele, et al.
Publicado: (2022) -
Dynamic Complexity of Spontaneous BOLD Activity in Alzheimer’s Disease and Mild Cognitive Impairment Using Multiscale Entropy Analysis
por: Niu, Yan, et al.
Publicado: (2018) -
Detection of epileptic seizures through EEG signals using entropy features and ensemble learning
por: Dastgoshadeh, Mahshid, et al.
Publicado: (2023)