Cargando…

Identification of metabolic phenotypes in childhood obesity by (1)H NMR metabolomics of blood plasma

AIM: To identify the plasma metabolic profile associated with childhood obesity and its metabolic phenotypes. MATERIALS & METHODS: The plasma metabolic profile of 65 obese and 37 normal-weight children was obtained using proton NMR spectroscopy. NMR spectra were rationally divided into 110 integ...

Descripción completa

Detalles Bibliográficos
Autores principales: Bervoets, Liene, Massa, Guy, Guedens, Wanda, Reekmans, Gunter, Noben, Jean-Paul, Adriaensens, Peter
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Future Science Ltd 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6060399/
https://www.ncbi.nlm.nih.gov/pubmed/30057787
http://dx.doi.org/10.4155/fsoa-2017-0146
Descripción
Sumario:AIM: To identify the plasma metabolic profile associated with childhood obesity and its metabolic phenotypes. MATERIALS & METHODS: The plasma metabolic profile of 65 obese and 37 normal-weight children was obtained using proton NMR spectroscopy. NMR spectra were rationally divided into 110 integration regions, which reflect relative metabolite concentrations, and were used as statistical variables. RESULTS: Obese children show increased levels of lipids, N-acetyl glycoproteins, and lactate, and decreased levels of several amino acids, α-ketoglutarate, glucose, citrate, and cholinated phospholipids as compared with normal-weight children. Metabolically healthy children show lower levels of lipids and lactate, and higher levels of several amino acids and cholinated phospholipids, as compared with unhealthy children. CONCLUSION: This study reveals new valuable findings in the field of metabolomics and childhood obesity. Although validation should be performed, the proof of principle looks promising and justifies a deeper investigation of the diagnostic possibilities of proton NMR metabolomics in follow-up studies. Trial registration: NCT03014856. Registered January 9, 2017.