Cargando…
Homeotropic Self-Alignment of Discotic Liquid Crystals for Nanoporous Polymer Films
[Image: see text] Nanostructured polymer films with continuous, membrane-spanning pores from polymerizable hexagonal columnar discotic liquid crystals (LCs) were fabricated. A robust alignment method was developed to obtain homeotropic alignment of columns between glass surfaces by adding a small am...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American
Chemical Society
2018
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6060402/ https://www.ncbi.nlm.nih.gov/pubmed/29975513 http://dx.doi.org/10.1021/acsnano.8b01822 |
Sumario: | [Image: see text] Nanostructured polymer films with continuous, membrane-spanning pores from polymerizable hexagonal columnar discotic liquid crystals (LCs) were fabricated. A robust alignment method was developed to obtain homeotropic alignment of columns between glass surfaces by adding a small amount of a tri(ethylene glycol) modified analogue of the mesogen as a dopant that preferentially wets glass. The homeotropic LC alignment was fixated via a photoinitiated free radical copolymerization of a high-temperature tolerant trisallyl mesogen with a divinyl ester. Removal of the hydrogen-bonded template from the aligned columns afforded a nanoporous network with pores of nearly 1 nm in diameter perpendicular to the surface, and without noticeable collapse of the nanopores. The effect of pore orientation was demonstrated by an adsorption experiment in which homeotropic film showed a threefold increase in the initial uptake rate of methylene blue compared to planarly aligned films. |
---|