Cargando…

Therapeutic use of carbohydrate-restricted diets in an autistic child; a case report of clinical and 18FDG PET findings

The ketogenic diet (KD) is a high-fat, adequate-protein, and low-carbohydrate diet that has been used successfully in the treatment of refractory epilepsies for almost 100 years. There has been accumulating evidence to show that the KD may provide a therapeutic benefit in autism spectrum disorders,...

Descripción completa

Detalles Bibliográficos
Autores principales: Żarnowska, Iwona, Chrapko, Beata, Gwizda, Grażyna, Nocuń, Anna, Mitosek-Szewczyk, Krystyna, Gasior, Maciej
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6060754/
https://www.ncbi.nlm.nih.gov/pubmed/29644487
http://dx.doi.org/10.1007/s11011-018-0219-1
Descripción
Sumario:The ketogenic diet (KD) is a high-fat, adequate-protein, and low-carbohydrate diet that has been used successfully in the treatment of refractory epilepsies for almost 100 years. There has been accumulating evidence to show that the KD may provide a therapeutic benefit in autism spectrum disorders, albeit by a yet-unknown mechanism. We report a case of a 6-year-old patient with high-functioning autism and subclinical epileptic discharges who responded poorly to several behavioural and psychopharmacological treatments. The patient was subsequently placed on the KD due to significant glucose hypometabolism in the brain as revealed by an 18FDG PET. As soon as one month after starting the KD, the patient’s behavior and intellect improved (in regard to hyperactivity, attention span, abnormal reactions to visual and auditory stimuli, usage of objects, adaptability to changes, communication skills, fear, anxiety, and emotional reactions); these improvements continued until the end of the observation period at 16 months on the KD. The 18FDG PET, measured at 12 months on the KD, revealed that 18F-FDG uptake decreased markedly and diffusely in the whole cerebral cortex with a relatively low reduction in basal ganglia in comparison to the pre-KD assessment. It warrants further investigation if the 18FDG PET imaging could serve as a biomarker in identifying individuals with autism who might benefit from the KD due to underlying abnormalities related to glucose hypometabolism.