Cargando…
On the neuronal circuitry mediating l-DOPA-induced dyskinesia
With the advent of rodent models of l-DOPA-induced dyskinesia (LID), a growing literature has linked molecular changes in the striatum to the development and expression of abnormal involuntary movements. Changes in information processing at the striatal level are assumed to impact on the activity of...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Vienna
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6060876/ https://www.ncbi.nlm.nih.gov/pubmed/29704061 http://dx.doi.org/10.1007/s00702-018-1886-0 |
_version_ | 1783342099079364608 |
---|---|
author | Cenci, M. Angela Jörntell, Henrik Petersson, Per |
author_facet | Cenci, M. Angela Jörntell, Henrik Petersson, Per |
author_sort | Cenci, M. Angela |
collection | PubMed |
description | With the advent of rodent models of l-DOPA-induced dyskinesia (LID), a growing literature has linked molecular changes in the striatum to the development and expression of abnormal involuntary movements. Changes in information processing at the striatal level are assumed to impact on the activity of downstream basal ganglia nuclei, which in turn influence brain-wide networks, but very little is actually known about systems-level mechanisms of dyskinesia. As an aid to approach this topic, we here review the anatomical and physiological organisation of cortico-basal ganglia-thalamocortical circuits, and the changes affecting these circuits in animal models of parkinsonism and LID. We then review recent findings indicating that an abnormal cerebellar compensation plays a causal role in LID, and that structures outside of the classical motor circuits are implicated too. In summarizing the available data, we also propose hypotheses and identify important knowledge gaps worthy of further investigation. In addition to informing novel therapeutic approaches, the study of LID can provide new clues about the interplay between different brain circuits in the control of movement. |
format | Online Article Text |
id | pubmed-6060876 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Springer Vienna |
record_format | MEDLINE/PubMed |
spelling | pubmed-60608762018-08-09 On the neuronal circuitry mediating l-DOPA-induced dyskinesia Cenci, M. Angela Jörntell, Henrik Petersson, Per J Neural Transm (Vienna) Neurology and Preclinical Neurological Studies - Review Article With the advent of rodent models of l-DOPA-induced dyskinesia (LID), a growing literature has linked molecular changes in the striatum to the development and expression of abnormal involuntary movements. Changes in information processing at the striatal level are assumed to impact on the activity of downstream basal ganglia nuclei, which in turn influence brain-wide networks, but very little is actually known about systems-level mechanisms of dyskinesia. As an aid to approach this topic, we here review the anatomical and physiological organisation of cortico-basal ganglia-thalamocortical circuits, and the changes affecting these circuits in animal models of parkinsonism and LID. We then review recent findings indicating that an abnormal cerebellar compensation plays a causal role in LID, and that structures outside of the classical motor circuits are implicated too. In summarizing the available data, we also propose hypotheses and identify important knowledge gaps worthy of further investigation. In addition to informing novel therapeutic approaches, the study of LID can provide new clues about the interplay between different brain circuits in the control of movement. Springer Vienna 2018-04-27 2018 /pmc/articles/PMC6060876/ /pubmed/29704061 http://dx.doi.org/10.1007/s00702-018-1886-0 Text en © The Author(s) 2018 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
spellingShingle | Neurology and Preclinical Neurological Studies - Review Article Cenci, M. Angela Jörntell, Henrik Petersson, Per On the neuronal circuitry mediating l-DOPA-induced dyskinesia |
title | On the neuronal circuitry mediating l-DOPA-induced dyskinesia |
title_full | On the neuronal circuitry mediating l-DOPA-induced dyskinesia |
title_fullStr | On the neuronal circuitry mediating l-DOPA-induced dyskinesia |
title_full_unstemmed | On the neuronal circuitry mediating l-DOPA-induced dyskinesia |
title_short | On the neuronal circuitry mediating l-DOPA-induced dyskinesia |
title_sort | on the neuronal circuitry mediating l-dopa-induced dyskinesia |
topic | Neurology and Preclinical Neurological Studies - Review Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6060876/ https://www.ncbi.nlm.nih.gov/pubmed/29704061 http://dx.doi.org/10.1007/s00702-018-1886-0 |
work_keys_str_mv | AT cencimangela ontheneuronalcircuitrymediatingldopainduceddyskinesia AT jorntellhenrik ontheneuronalcircuitrymediatingldopainduceddyskinesia AT peterssonper ontheneuronalcircuitrymediatingldopainduceddyskinesia |