Cargando…

Multiplex proteomics for prediction of major cardiovascular events in type 2 diabetes

AIMS/HYPOTHESIS: Multiplex proteomics could improve understanding and risk prediction of major adverse cardiovascular events (MACE) in type 2 diabetes. This study assessed 80 cardiovascular and inflammatory proteins for biomarker discovery and prediction of MACE in type 2 diabetes. METHODS: We combi...

Descripción completa

Detalles Bibliográficos
Autores principales: Nowak, Christoph, Carlsson, Axel C., Östgren, Carl Johan, Nyström, Fredrik H., Alam, Moudud, Feldreich, Tobias, Sundström, Johan, Carrero, Juan-Jesus, Leppert, Jerzy, Hedberg, Pär, Henriksen, Egil, Cordeiro, Antonio C., Giedraitis, Vilmantas, Lind, Lars, Ingelsson, Erik, Fall, Tove, Ärnlöv, Johan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6061158/
https://www.ncbi.nlm.nih.gov/pubmed/29796748
http://dx.doi.org/10.1007/s00125-018-4641-z
_version_ 1783342163701006336
author Nowak, Christoph
Carlsson, Axel C.
Östgren, Carl Johan
Nyström, Fredrik H.
Alam, Moudud
Feldreich, Tobias
Sundström, Johan
Carrero, Juan-Jesus
Leppert, Jerzy
Hedberg, Pär
Henriksen, Egil
Cordeiro, Antonio C.
Giedraitis, Vilmantas
Lind, Lars
Ingelsson, Erik
Fall, Tove
Ärnlöv, Johan
author_facet Nowak, Christoph
Carlsson, Axel C.
Östgren, Carl Johan
Nyström, Fredrik H.
Alam, Moudud
Feldreich, Tobias
Sundström, Johan
Carrero, Juan-Jesus
Leppert, Jerzy
Hedberg, Pär
Henriksen, Egil
Cordeiro, Antonio C.
Giedraitis, Vilmantas
Lind, Lars
Ingelsson, Erik
Fall, Tove
Ärnlöv, Johan
author_sort Nowak, Christoph
collection PubMed
description AIMS/HYPOTHESIS: Multiplex proteomics could improve understanding and risk prediction of major adverse cardiovascular events (MACE) in type 2 diabetes. This study assessed 80 cardiovascular and inflammatory proteins for biomarker discovery and prediction of MACE in type 2 diabetes. METHODS: We combined data from six prospective epidemiological studies of 30–77-year-old individuals with type 2 diabetes in whom 80 circulating proteins were measured by proximity extension assay. Multivariable-adjusted Cox regression was used in a discovery/replication design to identify biomarkers for incident MACE. We used gradient-boosted machine learning and lasso regularised Cox regression in a random 75% training subsample to assess whether adding proteins to risk factors included in the Swedish National Diabetes Register risk model would improve the prediction of MACE in the separate 25% test subsample. RESULTS: Of 1211 adults with type 2 diabetes (32% women), 211 experienced a MACE over a mean (±SD) of 6.4 ± 2.3 years. We replicated associations (<5% false discovery rate) between risk of MACE and eight proteins: matrix metalloproteinase (MMP)-12, IL-27 subunit α (IL-27a), kidney injury molecule (KIM)-1, fibroblast growth factor (FGF)-23, protein S100-A12, TNF receptor (TNFR)-1, TNFR-2 and TNF-related apoptosis-inducing ligand receptor (TRAIL-R)2. Addition of the 80-protein assay to established risk factors improved discrimination in the separate test sample from 0.686 (95% CI 0.682, 0.689) to 0.748 (95% CI 0.746, 0.751). A sparse model of 20 added proteins achieved a C statistic of 0.747 (95% CI 0.653, 0.842) in the test sample. CONCLUSIONS/INTERPRETATION: We identified eight protein biomarkers, four of which are novel, for risk of MACE in community residents with type 2 diabetes, and found improved risk prediction by combining multiplex proteomics with an established risk model. Multiprotein arrays could be useful in identifying individuals with type 2 diabetes who are at highest risk of a cardiovascular event. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1007/s00125-018-4641-z) contains peer-reviewed but unedited supplementary material, which is available to authorised users.
format Online
Article
Text
id pubmed-6061158
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Springer Berlin Heidelberg
record_format MEDLINE/PubMed
spelling pubmed-60611582018-08-09 Multiplex proteomics for prediction of major cardiovascular events in type 2 diabetes Nowak, Christoph Carlsson, Axel C. Östgren, Carl Johan Nyström, Fredrik H. Alam, Moudud Feldreich, Tobias Sundström, Johan Carrero, Juan-Jesus Leppert, Jerzy Hedberg, Pär Henriksen, Egil Cordeiro, Antonio C. Giedraitis, Vilmantas Lind, Lars Ingelsson, Erik Fall, Tove Ärnlöv, Johan Diabetologia Article AIMS/HYPOTHESIS: Multiplex proteomics could improve understanding and risk prediction of major adverse cardiovascular events (MACE) in type 2 diabetes. This study assessed 80 cardiovascular and inflammatory proteins for biomarker discovery and prediction of MACE in type 2 diabetes. METHODS: We combined data from six prospective epidemiological studies of 30–77-year-old individuals with type 2 diabetes in whom 80 circulating proteins were measured by proximity extension assay. Multivariable-adjusted Cox regression was used in a discovery/replication design to identify biomarkers for incident MACE. We used gradient-boosted machine learning and lasso regularised Cox regression in a random 75% training subsample to assess whether adding proteins to risk factors included in the Swedish National Diabetes Register risk model would improve the prediction of MACE in the separate 25% test subsample. RESULTS: Of 1211 adults with type 2 diabetes (32% women), 211 experienced a MACE over a mean (±SD) of 6.4 ± 2.3 years. We replicated associations (<5% false discovery rate) between risk of MACE and eight proteins: matrix metalloproteinase (MMP)-12, IL-27 subunit α (IL-27a), kidney injury molecule (KIM)-1, fibroblast growth factor (FGF)-23, protein S100-A12, TNF receptor (TNFR)-1, TNFR-2 and TNF-related apoptosis-inducing ligand receptor (TRAIL-R)2. Addition of the 80-protein assay to established risk factors improved discrimination in the separate test sample from 0.686 (95% CI 0.682, 0.689) to 0.748 (95% CI 0.746, 0.751). A sparse model of 20 added proteins achieved a C statistic of 0.747 (95% CI 0.653, 0.842) in the test sample. CONCLUSIONS/INTERPRETATION: We identified eight protein biomarkers, four of which are novel, for risk of MACE in community residents with type 2 diabetes, and found improved risk prediction by combining multiplex proteomics with an established risk model. Multiprotein arrays could be useful in identifying individuals with type 2 diabetes who are at highest risk of a cardiovascular event. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1007/s00125-018-4641-z) contains peer-reviewed but unedited supplementary material, which is available to authorised users. Springer Berlin Heidelberg 2018-05-24 2018 /pmc/articles/PMC6061158/ /pubmed/29796748 http://dx.doi.org/10.1007/s00125-018-4641-z Text en © The Author(s) 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
spellingShingle Article
Nowak, Christoph
Carlsson, Axel C.
Östgren, Carl Johan
Nyström, Fredrik H.
Alam, Moudud
Feldreich, Tobias
Sundström, Johan
Carrero, Juan-Jesus
Leppert, Jerzy
Hedberg, Pär
Henriksen, Egil
Cordeiro, Antonio C.
Giedraitis, Vilmantas
Lind, Lars
Ingelsson, Erik
Fall, Tove
Ärnlöv, Johan
Multiplex proteomics for prediction of major cardiovascular events in type 2 diabetes
title Multiplex proteomics for prediction of major cardiovascular events in type 2 diabetes
title_full Multiplex proteomics for prediction of major cardiovascular events in type 2 diabetes
title_fullStr Multiplex proteomics for prediction of major cardiovascular events in type 2 diabetes
title_full_unstemmed Multiplex proteomics for prediction of major cardiovascular events in type 2 diabetes
title_short Multiplex proteomics for prediction of major cardiovascular events in type 2 diabetes
title_sort multiplex proteomics for prediction of major cardiovascular events in type 2 diabetes
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6061158/
https://www.ncbi.nlm.nih.gov/pubmed/29796748
http://dx.doi.org/10.1007/s00125-018-4641-z
work_keys_str_mv AT nowakchristoph multiplexproteomicsforpredictionofmajorcardiovasculareventsintype2diabetes
AT carlssonaxelc multiplexproteomicsforpredictionofmajorcardiovasculareventsintype2diabetes
AT ostgrencarljohan multiplexproteomicsforpredictionofmajorcardiovasculareventsintype2diabetes
AT nystromfredrikh multiplexproteomicsforpredictionofmajorcardiovasculareventsintype2diabetes
AT alammoudud multiplexproteomicsforpredictionofmajorcardiovasculareventsintype2diabetes
AT feldreichtobias multiplexproteomicsforpredictionofmajorcardiovasculareventsintype2diabetes
AT sundstromjohan multiplexproteomicsforpredictionofmajorcardiovasculareventsintype2diabetes
AT carrerojuanjesus multiplexproteomicsforpredictionofmajorcardiovasculareventsintype2diabetes
AT leppertjerzy multiplexproteomicsforpredictionofmajorcardiovasculareventsintype2diabetes
AT hedbergpar multiplexproteomicsforpredictionofmajorcardiovasculareventsintype2diabetes
AT henriksenegil multiplexproteomicsforpredictionofmajorcardiovasculareventsintype2diabetes
AT cordeiroantonioc multiplexproteomicsforpredictionofmajorcardiovasculareventsintype2diabetes
AT giedraitisvilmantas multiplexproteomicsforpredictionofmajorcardiovasculareventsintype2diabetes
AT lindlars multiplexproteomicsforpredictionofmajorcardiovasculareventsintype2diabetes
AT ingelssonerik multiplexproteomicsforpredictionofmajorcardiovasculareventsintype2diabetes
AT falltove multiplexproteomicsforpredictionofmajorcardiovasculareventsintype2diabetes
AT arnlovjohan multiplexproteomicsforpredictionofmajorcardiovasculareventsintype2diabetes