Cargando…

Dynamics of spontaneous activity in random networks with multiple neuron subtypes and synaptic noise: Spontaneous activity in networks with synaptic noise

Spontaneous cortical population activity exhibits a multitude of oscillatory patterns, which often display synchrony during slow-wave sleep or under certain anesthetics and stay asynchronous during quiet wakefulness. The mechanisms behind these cortical states and transitions among them are not comp...

Descripción completa

Detalles Bibliográficos
Autores principales: Pena, Rodrigo F. O., Zaks, Michael A., Roque, Antonio C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6061197/
https://www.ncbi.nlm.nih.gov/pubmed/29923159
http://dx.doi.org/10.1007/s10827-018-0688-6
_version_ 1783342172738682880
author Pena, Rodrigo F. O.
Zaks, Michael A.
Roque, Antonio C.
author_facet Pena, Rodrigo F. O.
Zaks, Michael A.
Roque, Antonio C.
author_sort Pena, Rodrigo F. O.
collection PubMed
description Spontaneous cortical population activity exhibits a multitude of oscillatory patterns, which often display synchrony during slow-wave sleep or under certain anesthetics and stay asynchronous during quiet wakefulness. The mechanisms behind these cortical states and transitions among them are not completely understood. Here we study spontaneous population activity patterns in random networks of spiking neurons of mixed types modeled by Izhikevich equations. Neurons are coupled by conductance-based synapses subject to synaptic noise. We localize the population activity patterns on the parameter diagram spanned by the relative inhibitory synaptic strength and the magnitude of synaptic noise. In absence of noise, networks display transient activity patterns, either oscillatory or at constant level. The effect of noise is to turn transient patterns into persistent ones: for weak noise, all activity patterns are asynchronous non-oscillatory independently of synaptic strengths; for stronger noise, patterns have oscillatory and synchrony characteristics that depend on the relative inhibitory synaptic strength. In the region of parameter space where inhibitory synaptic strength exceeds the excitatory synaptic strength and for moderate noise magnitudes networks feature intermittent switches between oscillatory and quiescent states with characteristics similar to those of synchronous and asynchronous cortical states, respectively. We explain these oscillatory and quiescent patterns by combining a phenomenological global description of the network state with local descriptions of individual neurons in their partial phase spaces. Our results point to a bridge from events at the molecular scale of synapses to the cellular scale of individual neurons to the collective scale of neuronal populations. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1007/s10827-018-0688-6) contains supplementary material, which is available to authorized users.
format Online
Article
Text
id pubmed-6061197
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Springer US
record_format MEDLINE/PubMed
spelling pubmed-60611972018-08-09 Dynamics of spontaneous activity in random networks with multiple neuron subtypes and synaptic noise: Spontaneous activity in networks with synaptic noise Pena, Rodrigo F. O. Zaks, Michael A. Roque, Antonio C. J Comput Neurosci Article Spontaneous cortical population activity exhibits a multitude of oscillatory patterns, which often display synchrony during slow-wave sleep or under certain anesthetics and stay asynchronous during quiet wakefulness. The mechanisms behind these cortical states and transitions among them are not completely understood. Here we study spontaneous population activity patterns in random networks of spiking neurons of mixed types modeled by Izhikevich equations. Neurons are coupled by conductance-based synapses subject to synaptic noise. We localize the population activity patterns on the parameter diagram spanned by the relative inhibitory synaptic strength and the magnitude of synaptic noise. In absence of noise, networks display transient activity patterns, either oscillatory or at constant level. The effect of noise is to turn transient patterns into persistent ones: for weak noise, all activity patterns are asynchronous non-oscillatory independently of synaptic strengths; for stronger noise, patterns have oscillatory and synchrony characteristics that depend on the relative inhibitory synaptic strength. In the region of parameter space where inhibitory synaptic strength exceeds the excitatory synaptic strength and for moderate noise magnitudes networks feature intermittent switches between oscillatory and quiescent states with characteristics similar to those of synchronous and asynchronous cortical states, respectively. We explain these oscillatory and quiescent patterns by combining a phenomenological global description of the network state with local descriptions of individual neurons in their partial phase spaces. Our results point to a bridge from events at the molecular scale of synapses to the cellular scale of individual neurons to the collective scale of neuronal populations. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1007/s10827-018-0688-6) contains supplementary material, which is available to authorized users. Springer US 2018-06-19 2018 /pmc/articles/PMC6061197/ /pubmed/29923159 http://dx.doi.org/10.1007/s10827-018-0688-6 Text en © The Author(s) 2018 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
spellingShingle Article
Pena, Rodrigo F. O.
Zaks, Michael A.
Roque, Antonio C.
Dynamics of spontaneous activity in random networks with multiple neuron subtypes and synaptic noise: Spontaneous activity in networks with synaptic noise
title Dynamics of spontaneous activity in random networks with multiple neuron subtypes and synaptic noise: Spontaneous activity in networks with synaptic noise
title_full Dynamics of spontaneous activity in random networks with multiple neuron subtypes and synaptic noise: Spontaneous activity in networks with synaptic noise
title_fullStr Dynamics of spontaneous activity in random networks with multiple neuron subtypes and synaptic noise: Spontaneous activity in networks with synaptic noise
title_full_unstemmed Dynamics of spontaneous activity in random networks with multiple neuron subtypes and synaptic noise: Spontaneous activity in networks with synaptic noise
title_short Dynamics of spontaneous activity in random networks with multiple neuron subtypes and synaptic noise: Spontaneous activity in networks with synaptic noise
title_sort dynamics of spontaneous activity in random networks with multiple neuron subtypes and synaptic noise: spontaneous activity in networks with synaptic noise
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6061197/
https://www.ncbi.nlm.nih.gov/pubmed/29923159
http://dx.doi.org/10.1007/s10827-018-0688-6
work_keys_str_mv AT penarodrigofo dynamicsofspontaneousactivityinrandomnetworkswithmultipleneuronsubtypesandsynapticnoisespontaneousactivityinnetworkswithsynapticnoise
AT zaksmichaela dynamicsofspontaneousactivityinrandomnetworkswithmultipleneuronsubtypesandsynapticnoisespontaneousactivityinnetworkswithsynapticnoise
AT roqueantonioc dynamicsofspontaneousactivityinrandomnetworkswithmultipleneuronsubtypesandsynapticnoisespontaneousactivityinnetworkswithsynapticnoise