Cargando…
The closedness of shift invariant subspaces in [Formula: see text]
In this paper, we consider the closedness of shift invariant subspaces in [Formula: see text] . We first define the shift invariant subspaces generated by the shifts of finite functions in [Formula: see text] . Then we give some necessary and sufficient conditions for the shift invariant subspaces i...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6061598/ https://www.ncbi.nlm.nih.gov/pubmed/30137894 http://dx.doi.org/10.1186/s13660-018-1755-2 |
_version_ | 1783342258259492864 |
---|---|
author | Zhang, Qingyue |
author_facet | Zhang, Qingyue |
author_sort | Zhang, Qingyue |
collection | PubMed |
description | In this paper, we consider the closedness of shift invariant subspaces in [Formula: see text] . We first define the shift invariant subspaces generated by the shifts of finite functions in [Formula: see text] . Then we give some necessary and sufficient conditions for the shift invariant subspaces in [Formula: see text] to be closed. Our results improve some known results in (Aldroubi et al. in J. Fourier Anal. Appl. 7:1–21, 2001). |
format | Online Article Text |
id | pubmed-6061598 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Springer International Publishing |
record_format | MEDLINE/PubMed |
spelling | pubmed-60615982018-08-09 The closedness of shift invariant subspaces in [Formula: see text] Zhang, Qingyue J Inequal Appl Research In this paper, we consider the closedness of shift invariant subspaces in [Formula: see text] . We first define the shift invariant subspaces generated by the shifts of finite functions in [Formula: see text] . Then we give some necessary and sufficient conditions for the shift invariant subspaces in [Formula: see text] to be closed. Our results improve some known results in (Aldroubi et al. in J. Fourier Anal. Appl. 7:1–21, 2001). Springer International Publishing 2018-07-06 2018 /pmc/articles/PMC6061598/ /pubmed/30137894 http://dx.doi.org/10.1186/s13660-018-1755-2 Text en © The Author(s) 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
spellingShingle | Research Zhang, Qingyue The closedness of shift invariant subspaces in [Formula: see text] |
title | The closedness of shift invariant subspaces in [Formula: see text] |
title_full | The closedness of shift invariant subspaces in [Formula: see text] |
title_fullStr | The closedness of shift invariant subspaces in [Formula: see text] |
title_full_unstemmed | The closedness of shift invariant subspaces in [Formula: see text] |
title_short | The closedness of shift invariant subspaces in [Formula: see text] |
title_sort | closedness of shift invariant subspaces in [formula: see text] |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6061598/ https://www.ncbi.nlm.nih.gov/pubmed/30137894 http://dx.doi.org/10.1186/s13660-018-1755-2 |
work_keys_str_mv | AT zhangqingyue theclosednessofshiftinvariantsubspacesinformulaseetext AT zhangqingyue closednessofshiftinvariantsubspacesinformulaseetext |