Cargando…
A global network of biomedical relationships derived from text
MOTIVATION: The biomedical community’s collective understanding of how chemicals, genes and phenotypes interact is distributed across the text of over 24 million research articles. These interactions offer insights into the mechanisms behind higher order biochemical phenomena, such as drug-drug inte...
Autores principales: | Percha, Bethany, Altman, Russ B |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6061699/ https://www.ncbi.nlm.nih.gov/pubmed/29490008 http://dx.doi.org/10.1093/bioinformatics/bty114 |
Ejemplares similares
-
Learning the Structure of Biomedical Relationships from Unstructured Text
por: Percha, Bethany, et al.
Publicado: (2015) -
Pharmspresso: a text mining tool for extraction of pharmacogenomic concepts and relationships from full text
por: Garten, Yael, et al.
Publicado: (2009) -
Large-scale extraction of gene interactions from full-text literature using DeepDive
por: Mallory, Emily K., et al.
Publicado: (2016) -
Full Text Clustering and Relationship Network Analysis of Biomedical Publications
por: Guan, Renchu, et al.
Publicado: (2014) -
Identifying genotype-phenotype relationships in biomedical text
por: Khordad, Maryam, et al.
Publicado: (2017)