Cargando…
EWAS: epigenome-wide association study software 2.0
MOTIVATION: With the development of biotechnology, DNA methylation data showed exponential growth. Epigenome-wide association study (EWAS) provide a systematic approach to uncovering epigenetic variants underlying common diseases/phenotypes. But the EWAS software has lagged behind compared with geno...
Autores principales: | Xu, Jing, Zhao, Linna, Liu, Di, Hu, Simeng, Song, Xiuling, Li, Jin, Lv, Hongchao, Duan, Lian, Zhang, Mingming, Jiang, Qinghua, Liu, Guiyou, Jin, Shuilin, Liao, Mingzhi, Zhang, Meng, Feng, Rennan, Kong, Fanwu, Xu, Liangde, Jiang, Yongshuai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6061808/ https://www.ncbi.nlm.nih.gov/pubmed/29566144 http://dx.doi.org/10.1093/bioinformatics/bty163 |
Ejemplares similares
-
Ten Years of EWAS
por: Wei, Siyu, et al.
Publicado: (2021) -
EWAS: epigenome-wide association studies software 1.0 – identifying the association between combinations of methylation levels and diseases
por: Xu, Jing, et al.
Publicado: (2016) -
EWASdb: epigenome-wide association study database
por: liu, Di, et al.
Publicado: (2019) -
MCPerm: A Monte Carlo Permutation Method for Accurately Correcting the Multiple Testing in a Meta-Analysis of Genetic Association Studies
por: Jiang, Yongshuai, et al.
Publicado: (2014) -
A Comparison of Co-methylation Relationships Between Rheumatoid Arthritis and Parkinson's Disease
por: Tang, Guoping, et al.
Publicado: (2019)