Cargando…

Attosecond precision multi-kilometer laser-microwave network

Synchronous laser-microwave networks delivering attosecond timing precision are highly desirable in many advanced applications, such as geodesy, very-long-baseline interferometry, high-precision navigation and multi-telescope arrays. In particular, rapidly expanding photon-science facilities like X-...

Descripción completa

Detalles Bibliográficos
Autores principales: Xin, Ming, Şafak, Kemal, Peng, Michael Y, Kalaydzhyan, Aram, Wang, Wen-Ting, Mücke, Oliver D, Kärtner, Franz X
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6061888/
https://www.ncbi.nlm.nih.gov/pubmed/30167191
http://dx.doi.org/10.1038/lsa.2016.187
Descripción
Sumario:Synchronous laser-microwave networks delivering attosecond timing precision are highly desirable in many advanced applications, such as geodesy, very-long-baseline interferometry, high-precision navigation and multi-telescope arrays. In particular, rapidly expanding photon-science facilities like X-ray free-electron lasers and intense laser beamlines require system-wide attosecond-level synchronization of dozens of optical and microwave signals up to kilometer distances. Once equipped with such precision, these facilities will initiate radically new science by shedding light on molecular and atomic processes happening on the attosecond timescale, such as intramolecular charge transfer, Auger processes and their impacts on X-ray imaging. Here we present for the first time a complete synchronous laser-microwave network with attosecond precision, which is achieved through new metrological devices and careful balancing of fiber nonlinearities and fundamental noise contributions. We demonstrate timing stabilization of a 4.7-km fiber network and remote optical–optical synchronization across a 3.5-km fiber link with an overall timing jitter of 580 and 680 attoseconds root-mean-square, respectively, for over 40 h. Ultimately, we realize a complete laser-microwave network with 950-attosecond timing jitter for 18 h. This work can enable next-generation attosecond photon-science facilities to revolutionize many research fields from structural biology to material science and chemistry to fundamental physics.