Cargando…
Self-referenced photonic chip soliton Kerr frequency comb
Self-referencing turns pulsed laser systems into self-referenced frequency combs. Such frequency combs allow counting of optical frequencies and have a wide range of applications. The required optical bandwidth to implement self-referencing is typically obtained via nonlinear broadening in optical f...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6061893/ https://www.ncbi.nlm.nih.gov/pubmed/30167198 http://dx.doi.org/10.1038/lsa.2016.202 |
Sumario: | Self-referencing turns pulsed laser systems into self-referenced frequency combs. Such frequency combs allow counting of optical frequencies and have a wide range of applications. The required optical bandwidth to implement self-referencing is typically obtained via nonlinear broadening in optical fibers. Recent advances in the field of Kerr frequency combs have provided a path toward the development of compact frequency comb sources that provide broadband frequency combs, exhibit microwave repetition rates and are compatible with on-chip photonic integration. These devices have the potential to significantly expand the use of frequency combs. Yet to date, self-referencing of such Kerr frequency combs has only been attained by applying conventional, fiber-based broadening techniques. Here we demonstrate external broadening-free self-referencing of a Kerr frequency comb. An optical spectrum spanning two-thirds of an octave is directly synthesized from a continuous wave laser-driven silicon nitride microresonator using temporal dissipative Kerr soliton formation and soliton Cherenkov radiation. Using this coherent bandwidth and two continuous wave transfer lasers in a 2f–3f self-referencing scheme, we are able to detect the offset frequency of the soliton Kerr frequency comb. By stabilizing the repetition rate to a radio frequency reference, the self-referenced frequency comb is used to count and track the continuous wave pump laser’s frequency. This work demonstrates the principal ability of soliton Kerr frequency combs to provide microwave-to-optical clockworks on a chip. |
---|