Cargando…

Single whispering-gallery mode lasing in polymer bottle microresonators via spatial pump engineering

Single-mode lasing in whispering-gallery mode (WGM) microresonators is challenging to achieve. In bottle microresonators, the highly non-degenerated WGMs are spatially well-separated along the long-axis direction and provide mode-selection capability. In this work, by engineering the pump intensity...

Descripción completa

Detalles Bibliográficos
Autores principales: Gu, Fuxing, Xie, Fuming, Lin, Xing, Linghu, Shuangyi, Fang, Wei, Zeng, Heping, Tong, Limin, Zhuang, Songlin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6061906/
https://www.ncbi.nlm.nih.gov/pubmed/30167203
http://dx.doi.org/10.1038/lsa.2017.61
Descripción
Sumario:Single-mode lasing in whispering-gallery mode (WGM) microresonators is challenging to achieve. In bottle microresonators, the highly non-degenerated WGMs are spatially well-separated along the long-axis direction and provide mode-selection capability. In this work, by engineering the pump intensity to modify the spatial gain profiles of bottle microresonators, we demonstrate a simple and general approach to realizing single-mode WGM lasing in polymer bottle microresonators. The pump intensity is engineered into an interference distribution on the bottle microresonator surface. By tuning the spacing between axial positions of the interference pump patterns, the mode intensity profiles of single-bottle WGMs can be spatially overlapped with the interference stripes, intrinsically enabling single-mode lasing and selection. Attractive advantages of the system, including high side-mode suppression factors >20 dB, large spectral tunability >8 nm, low-lasing threshold and reversible control, are presented. Our demonstrated approach may have a variety of promising applications, ranging from tunable single-mode lasing and sensing to nonlinear optics.