Cargando…

Genome-wide analysis of ATP binding cassette (ABC) transporters in tomato

ATP binding cassette (ABC) transporters are proteins that actively mediate the transport of a wide range of molecules, such as organic acids, metal ions, phytohormones and secondary metabolites. Therefore, ABC transporters must play indispensable roles in growth and development of tomato, including...

Descripción completa

Detalles Bibliográficos
Autores principales: Ofori, Peter Amoako, Mizuno, Ayaka, Suzuki, Mami, Martinoia, Enrico, Reuscher, Stefan, Aoki, Koh, Shibata, Daisuke, Otagaki, Shungo, Matsumoto, Shogo, Shiratake, Katsuhiro
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6062036/
https://www.ncbi.nlm.nih.gov/pubmed/30048467
http://dx.doi.org/10.1371/journal.pone.0200854
Descripción
Sumario:ATP binding cassette (ABC) transporters are proteins that actively mediate the transport of a wide range of molecules, such as organic acids, metal ions, phytohormones and secondary metabolites. Therefore, ABC transporters must play indispensable roles in growth and development of tomato, including fruit development. Most ABC transporters have transmembrane domains (TMDs) and belong to the ABC protein family, which includes not only ABC transporters but also soluble ABC proteins lacking TMDs. In this study, we performed a genome-wide identification and expression analysis of genes encoding ABC proteins in tomato (Solanum lycopersicum), which is a valuable horticultural crop and a model plant for studying fleshy fruits. In the tomato genome, a total of 154 genes putatively encoding ABC transporters, including 9 ABCAs, 29 ABCBs, 26 ABCCs, 2 ABCDs, 2 ABCEs, 6 ABCFs, 70 ABCGs and 10 ABCIs, were identified. Gene expression data from the eFP Browser and reverse transcription-semi-quantitative PCR analysis revealed their tissue-specific and development-specific expression profiles. This work suggests physiological roles of ABC transporters in tomato and provides fundamental information for future studies of ABC transporters not only in tomato but also in other Solanaceae species.