Cargando…
Catabolism of mucus components influences motility of Vibrio cholerae in the presence of environmental reservoirs
Vibrio cholerae O1, the etiological agent of cholera, is a natural inhabitant of aquatic ecosystems. Motility is a critical element for the colonization of both the human host and its environmental reservoirs. In this study, we investigated the molecular mechanisms underlying the chemotactic respons...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6062102/ https://www.ncbi.nlm.nih.gov/pubmed/30048543 http://dx.doi.org/10.1371/journal.pone.0201383 |
Sumario: | Vibrio cholerae O1, the etiological agent of cholera, is a natural inhabitant of aquatic ecosystems. Motility is a critical element for the colonization of both the human host and its environmental reservoirs. In this study, we investigated the molecular mechanisms underlying the chemotactic response of V. cholerae in the presence of some of its environmental reservoirs. We found that, from the several oligosaccharides found in mucin, two specifically triggered motility of V. cholerae O1: N-acetylneuraminic acid (Neu5Ac) and N-acetylglucosamine (GlcNAc). We determined that the compounds need to be internally catabolized in order to trigger motility of V. cholerae. Interestingly, the catabolism of Neu5Ac and GlcNAc converges and the production of one molecule common to both pathways, glucosamine-6-phosphate (GlcN-6P), is essential to induce motility in the presence of both compounds. Mutants unable to produce GlcN-6P show greatly reduced motility towards mucin. Furthermore, we determined that the production of GlcN-6P is necessary to induce motility of V. cholerae in the presence of some of its environmental reservoirs such as crustaceans or cyanobacteria, revealing a molecular link between the two distinct modes of the complex life cycle of V. cholerae. Finally, cross-species comparisons revealed varied chemotactic responses towards mucin, GlcNAc, and Neu5Ac for environmental (non-pathogenic) strains of V. cholerae, clinical and environmental isolates of the human pathogens Vibrio vulnificus and Vibrio parahaemolyticus, and fish and squid isolates of the symbiotic bacterium Vibrio fischeri. The data presented here suggest nuance in convergent strategies across species of the same bacterial family for motility towards suitable substrates for colonization. |
---|