Cargando…

Effects of motor fatigue on walking stability and variability during concurrent cognitive challenges

Cognitive-motor interference, a negative influence on the performance of one or both tasks, is manifested when simultaneously performing a cognitive and a motor task. Motor fatigue reduces the ability of generating a required force level. However, little is known about the effects of motor fatigue o...

Descripción completa

Detalles Bibliográficos
Autores principales: Kao, Pei-Chun, Pierro, Michaela A., Booras, Konstantina
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6062111/
https://www.ncbi.nlm.nih.gov/pubmed/30048551
http://dx.doi.org/10.1371/journal.pone.0201433
_version_ 1783342339965583360
author Kao, Pei-Chun
Pierro, Michaela A.
Booras, Konstantina
author_facet Kao, Pei-Chun
Pierro, Michaela A.
Booras, Konstantina
author_sort Kao, Pei-Chun
collection PubMed
description Cognitive-motor interference, a negative influence on the performance of one or both tasks, is manifested when simultaneously performing a cognitive and a motor task. Motor fatigue reduces the ability of generating a required force level. However, little is known about the effects of motor fatigue on the cognitive-motor dual-tasking performance, an important capability during our daily lives. This study investigated how motor fatigue affects dual-task walking performance. Eighteen healthy younger adults walked on a treadmill under three different conditions: walking only, walking while receiving the Paced Auditory Serial Addition Test (PASAT) or a modified Stroop test before and after a lower-extremity fatiguing exercise. We computed dynamic margins of stability (MOS), step and joint kinematic variability, and short-term local divergence exponent (LDE) of the trunk motion. We found that subjects had similar values of short-term LDE during all conditions, indicating that local stability was not affected by the motor fatigue or dual-task conditions. Compared to the baseline, subjects had significantly greater mean MOS after the fatiguing exercise by walking with greater step length and width while having significantly greater gait variability. In contrast, subjects walked with similar mean MOS but significantly less gait variability during the dual-task conditions, indicating that subjects used different adaptive strategies when walking with motor fatigue and during dual-task conditions. There were no significant differences in the number of errors for the two cognitive tests before and after the fatiguing exercise. The current findings demonstrate that motor fatigue does not affect cognitive but motor performance in younger adults.
format Online
Article
Text
id pubmed-6062111
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-60621112018-08-03 Effects of motor fatigue on walking stability and variability during concurrent cognitive challenges Kao, Pei-Chun Pierro, Michaela A. Booras, Konstantina PLoS One Research Article Cognitive-motor interference, a negative influence on the performance of one or both tasks, is manifested when simultaneously performing a cognitive and a motor task. Motor fatigue reduces the ability of generating a required force level. However, little is known about the effects of motor fatigue on the cognitive-motor dual-tasking performance, an important capability during our daily lives. This study investigated how motor fatigue affects dual-task walking performance. Eighteen healthy younger adults walked on a treadmill under three different conditions: walking only, walking while receiving the Paced Auditory Serial Addition Test (PASAT) or a modified Stroop test before and after a lower-extremity fatiguing exercise. We computed dynamic margins of stability (MOS), step and joint kinematic variability, and short-term local divergence exponent (LDE) of the trunk motion. We found that subjects had similar values of short-term LDE during all conditions, indicating that local stability was not affected by the motor fatigue or dual-task conditions. Compared to the baseline, subjects had significantly greater mean MOS after the fatiguing exercise by walking with greater step length and width while having significantly greater gait variability. In contrast, subjects walked with similar mean MOS but significantly less gait variability during the dual-task conditions, indicating that subjects used different adaptive strategies when walking with motor fatigue and during dual-task conditions. There were no significant differences in the number of errors for the two cognitive tests before and after the fatiguing exercise. The current findings demonstrate that motor fatigue does not affect cognitive but motor performance in younger adults. Public Library of Science 2018-07-26 /pmc/articles/PMC6062111/ /pubmed/30048551 http://dx.doi.org/10.1371/journal.pone.0201433 Text en © 2018 Kao et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Kao, Pei-Chun
Pierro, Michaela A.
Booras, Konstantina
Effects of motor fatigue on walking stability and variability during concurrent cognitive challenges
title Effects of motor fatigue on walking stability and variability during concurrent cognitive challenges
title_full Effects of motor fatigue on walking stability and variability during concurrent cognitive challenges
title_fullStr Effects of motor fatigue on walking stability and variability during concurrent cognitive challenges
title_full_unstemmed Effects of motor fatigue on walking stability and variability during concurrent cognitive challenges
title_short Effects of motor fatigue on walking stability and variability during concurrent cognitive challenges
title_sort effects of motor fatigue on walking stability and variability during concurrent cognitive challenges
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6062111/
https://www.ncbi.nlm.nih.gov/pubmed/30048551
http://dx.doi.org/10.1371/journal.pone.0201433
work_keys_str_mv AT kaopeichun effectsofmotorfatigueonwalkingstabilityandvariabilityduringconcurrentcognitivechallenges
AT pierromichaelaa effectsofmotorfatigueonwalkingstabilityandvariabilityduringconcurrentcognitivechallenges
AT booraskonstantina effectsofmotorfatigueonwalkingstabilityandvariabilityduringconcurrentcognitivechallenges