Cargando…

Nanoplasmonic mid-infrared biosensor for in vitro protein secondary structure detection

Plasmonic nanoantennas offer new applications in mid-infrared (mid-IR) absorption spectroscopy with ultrasensitive detection of structural signatures of biomolecules, such as proteins, due to their strong resonant near-fields. The amide I fingerprint of a protein contains conformational information...

Descripción completa

Detalles Bibliográficos
Autores principales: Etezadi, Dordaneh, Warner IV, John B, Ruggeri, Francesco S, Dietler, Giovanni, Lashuel, Hilal A, Altug, Hatice
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6062318/
https://www.ncbi.nlm.nih.gov/pubmed/30167280
http://dx.doi.org/10.1038/lsa.2017.29
Descripción
Sumario:Plasmonic nanoantennas offer new applications in mid-infrared (mid-IR) absorption spectroscopy with ultrasensitive detection of structural signatures of biomolecules, such as proteins, due to their strong resonant near-fields. The amide I fingerprint of a protein contains conformational information that is greatly important for understanding its function in health and disease. Here, we introduce a non-invasive, label-free mid-IR nanoantenna-array sensor for secondary structure identification of nanometer-thin protein layers in aqueous solution by resolving the content of plasmonically enhanced amide I signatures. We successfully detect random coil to cross β-sheet conformational changes associated with α-synuclein protein aggregation, a detrimental process in many neurodegenerative disorders. Notably, our experimental results demonstrate high conformational sensitivity by differentiating subtle secondary-structural variations in a native β-sheet protein monolayer from those of cross β-sheets, which are characteristic of pathological aggregates. Our nanoplasmonic biosensor is a highly promising and versatile tool for in vitro structural analysis of thin protein layers.