Cargando…
Achromatic super-oscillatory lenses with sub-wavelength focusing
Lenses are crucial to light-enabled technologies. Conventional lenses have been perfected to achieve near-diffraction-limited resolution and minimal chromatic aberrations. However, such lenses are bulky and cannot focus light into a hotspot smaller than a half-wavelength of light. Pupil filters, ini...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6062332/ https://www.ncbi.nlm.nih.gov/pubmed/30167290 http://dx.doi.org/10.1038/lsa.2017.36 |
Sumario: | Lenses are crucial to light-enabled technologies. Conventional lenses have been perfected to achieve near-diffraction-limited resolution and minimal chromatic aberrations. However, such lenses are bulky and cannot focus light into a hotspot smaller than a half-wavelength of light. Pupil filters, initially suggested by Toraldo di Francia, can overcome the resolution constraints of conventional lenses but are not intrinsically chromatically corrected. Here we report single-element planar lenses that not only deliver sub-wavelength focusing, thus beating the diffraction limit of conventional refractive lenses, but also focus light of different colors into the same hotspot. Using the principle of super-oscillations, we designed and fabricated a range of binary dielectric and metallic lenses for visible and infrared parts of the spectrum that are manufactured on silicon wafers, silica substrates and optical fiber tips. Such low-cost, compact lenses could be useful in mobile devices, data storage, surveillance, robotics, space applications, imaging, manufacturing with light and spatially resolved nonlinear microscopies. |
---|