Cargando…
Assessment of High Thermal Effects on Carbon Nanotube (Cnt)- Reinforced Concrete
This paper presents the outcome of a project funded by Beni-suef University targeting the assessment of the addition of carbon nanotubes (CNTs) to reinforced concrete beams on exposure to elevated temperatures. Tests were carried out in compliance to ASTM E119-95a. Besides, pre and post their exposu...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6062543/ https://www.ncbi.nlm.nih.gov/pubmed/30050106 http://dx.doi.org/10.1038/s41598-018-29663-5 |
Sumario: | This paper presents the outcome of a project funded by Beni-suef University targeting the assessment of the addition of carbon nanotubes (CNTs) to reinforced concrete beams on exposure to elevated temperatures. Tests were carried out in compliance to ASTM E119-95a. Besides, pre and post their exposure to elevated temperature tests, the maximum bending capacity of the beams are evaluated. Standard reinforced concrete beams are cast- with and without Carbon Nanotube (CNT). Tests were performed at two temperature levels 400 °C and 600 °C working around temperature ranges expected to have significant effect on concrete endurance, using both one and two hours exposure. Results proved a positive effect for adding CNT to beams at room temperature. This improvement is slightly affected at 400 °C exposure for 2 hr. On the other hand, exposing CNT beams for 600 °C for two hours reduced the beams capacity by 14% compared to a similar reinforced beam without CNT. It is worth notice that CNT was not burnt but suffered de-bonding. Finally, this investigation implies that CNT can be used as an enhancing element to concrete ductility, with no deterioration in other mechanical characteristics on exposure to drastic thermal conditions. |
---|