Cargando…

Playing with universality classes of Barkhausen avalanches

Many systems crackle, from earthquakes and financial markets to Barkhausen effect in ferromagnetic materials. Despite the diversity in essence, the noise emitted in these dynamical systems consists of avalanche-like events with broad range of sizes and durations, characterized by power-law avalanche...

Descripción completa

Detalles Bibliográficos
Autores principales: Bohn, Felipe, Durin, Gianfranco, Correa, Marcio Assolin, Machado, Núbia Ribeiro, Della Pace, Rafael Domingues, Chesman, Carlos, Sommer, Rubem Luis
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6062580/
https://www.ncbi.nlm.nih.gov/pubmed/30050109
http://dx.doi.org/10.1038/s41598-018-29576-3
Descripción
Sumario:Many systems crackle, from earthquakes and financial markets to Barkhausen effect in ferromagnetic materials. Despite the diversity in essence, the noise emitted in these dynamical systems consists of avalanche-like events with broad range of sizes and durations, characterized by power-law avalanche distributions and typical average avalanche shape that are fingerprints describing the universality class of the underlying avalanche dynamics. Here we focus on the crackling noise in ferromagnets and scrutinize the traditional statistics of Barkhausen avalanches in polycrystalline and amorphous ferromagnetic films having different thicknesses. We show how scaling exponents and average shape of the avalanches evolve with the structural character of the materials and film thickness. We find quantitative agreement between experiment and theoretical predictions of models for the magnetic domain wall dynamics, and then elucidate the universality classes of Barkhausen avalanches in ferromagnetic films. Thereby, we observe for the first time the dimensional crossover in the domain wall dynamics and the outcomes of the interplay between system dimensionality and range of interactions governing the domain wall dynamics on Barkhausen avalanches.