Cargando…
Metric characterizations for well-posedness of split hemivariational inequalities
In this paper, we generalize the concept of well-posedness to a class of split hemivariational inequalities. By imposing very mild assumptions on involved operators, we establish some metric characterizations of the well-posedness for the split hemivariational inequality. The obtained results genera...
Autores principales: | Shu, Qiao-yuan, Hu, Rong, Xiao, Yi-bin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6063349/ https://www.ncbi.nlm.nih.gov/pubmed/30137918 http://dx.doi.org/10.1186/s13660-018-1761-4 |
Ejemplares similares
-
Well-posedness for a class of generalized variational-hemivariational inequalities involving set-valued operators
por: Jiang, Caijing
Publicado: (2018) -
Variational-hemivariational inequalities with applications
por: Sofonea, Mircea, et al.
Publicado: (2017) -
Variational and hemivariational inequalities: theory, methods and applications
por: Goeleven, D, et al.
Publicado: (2003) -
Variational and hemivariational inequalities theory, methods and applications
por: Goeleven, D, et al.
Publicado: (2003) -
Minimax theorems and qualitative properties of the solutions of hemivariational inequalities
por: Motreanu, D, et al.
Publicado: (1999)