Cargando…
Computer-aided diagnosis of lung nodule classification between benign nodule, primary lung cancer, and metastatic lung cancer at different image size using deep convolutional neural network with transfer learning
We developed a computer-aided diagnosis (CADx) method for classification between benign nodule, primary lung cancer, and metastatic lung cancer and evaluated the following: (i) the usefulness of the deep convolutional neural network (DCNN) for CADx of the ternary classification, compared with a conv...
Autores principales: | Nishio, Mizuho, Sugiyama, Osamu, Yakami, Masahiro, Ueno, Syoko, Kubo, Takeshi, Kuroda, Tomohiro, Togashi, Kaori |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6063408/ https://www.ncbi.nlm.nih.gov/pubmed/30052644 http://dx.doi.org/10.1371/journal.pone.0200721 |
Ejemplares similares
-
Computer-aided diagnosis of lung nodule using gradient tree boosting and Bayesian optimization
por: Nishio, Mizuho, et al.
Publicado: (2018) -
Estimation of lung cancer risk using homology-based emphysema quantification in patients with lung nodules
por: Nishio, Mizuho, et al.
Publicado: (2019) -
Automatic inference model construction for computer-aided diagnosis of lung nodule: Explanation adequacy, inference accuracy, and experts’ knowledge
por: Kawagishi, Masami, et al.
Publicado: (2018) -
Automated prediction of emphysema visual score using homology-based quantification of low-attenuation lung region
por: Nishio, Mizuho, et al.
Publicado: (2017) -
Efficiency and reproducibility in pulmonary nodule detection in simulated dose reduction lung CT images
por: Kubo, Takeshi, et al.
Publicado: (2019)