Cargando…
A quantitative physical model of the TMS-induced discharge artifacts in EEG
The combination of Transcranial Magnetic Stimulation (TMS) with Electroencephalography (EEG) exposes the brain’s global response to localized and abrupt stimulations. However, large electric artifacts are induced in the EEG by the TMS, obscuring crucial stages of the brain’s response. Artifact remov...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6063435/ https://www.ncbi.nlm.nih.gov/pubmed/30016315 http://dx.doi.org/10.1371/journal.pcbi.1006177 |
_version_ | 1783342556307783680 |
---|---|
author | Freche, Dominik Naim-Feil, Jodie Peled, Avi Levit-Binnun, Nava Moses, Elisha |
author_facet | Freche, Dominik Naim-Feil, Jodie Peled, Avi Levit-Binnun, Nava Moses, Elisha |
author_sort | Freche, Dominik |
collection | PubMed |
description | The combination of Transcranial Magnetic Stimulation (TMS) with Electroencephalography (EEG) exposes the brain’s global response to localized and abrupt stimulations. However, large electric artifacts are induced in the EEG by the TMS, obscuring crucial stages of the brain’s response. Artifact removal is commonly performed by data processing techniques. However, an experimentally verified physical model for the origin and structure of the TMS-induced discharge artifacts, by which these methods can be justified or evaluated, is still lacking. We re-examine the known contribution of the skin in creating the artifacts, and outline a detailed model for the relaxation of the charge accumulated at the electrode-gel-skin interface due to the TMS pulse. We then experimentally validate implications set forth by the model. We find that the artifacts decay like a power law in time rather than the commonly assumed exponential. In fact, the skin creates a power-law decay of order 1 at each electrode, which is turned into a power law of order 2 by the reference electrode. We suggest an artifact removal method based on the model which can be applied from times after the pulse as short as 2 milliseconds onwards to expose the full EEG from the brain. The method can separate the capacitive discharge artifacts from those resulting from cranial muscle activation, demonstrating that the capacitive effect dominates at short times. Overall, our insight into the physical process allows us to accurately access TMS-evoked EEG responses that directly follow the TMS pulse, possibly opening new opportunities in TMS-EEG research. |
format | Online Article Text |
id | pubmed-6063435 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-60634352018-08-09 A quantitative physical model of the TMS-induced discharge artifacts in EEG Freche, Dominik Naim-Feil, Jodie Peled, Avi Levit-Binnun, Nava Moses, Elisha PLoS Comput Biol Research Article The combination of Transcranial Magnetic Stimulation (TMS) with Electroencephalography (EEG) exposes the brain’s global response to localized and abrupt stimulations. However, large electric artifacts are induced in the EEG by the TMS, obscuring crucial stages of the brain’s response. Artifact removal is commonly performed by data processing techniques. However, an experimentally verified physical model for the origin and structure of the TMS-induced discharge artifacts, by which these methods can be justified or evaluated, is still lacking. We re-examine the known contribution of the skin in creating the artifacts, and outline a detailed model for the relaxation of the charge accumulated at the electrode-gel-skin interface due to the TMS pulse. We then experimentally validate implications set forth by the model. We find that the artifacts decay like a power law in time rather than the commonly assumed exponential. In fact, the skin creates a power-law decay of order 1 at each electrode, which is turned into a power law of order 2 by the reference electrode. We suggest an artifact removal method based on the model which can be applied from times after the pulse as short as 2 milliseconds onwards to expose the full EEG from the brain. The method can separate the capacitive discharge artifacts from those resulting from cranial muscle activation, demonstrating that the capacitive effect dominates at short times. Overall, our insight into the physical process allows us to accurately access TMS-evoked EEG responses that directly follow the TMS pulse, possibly opening new opportunities in TMS-EEG research. Public Library of Science 2018-07-17 /pmc/articles/PMC6063435/ /pubmed/30016315 http://dx.doi.org/10.1371/journal.pcbi.1006177 Text en © 2018 Freche et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Freche, Dominik Naim-Feil, Jodie Peled, Avi Levit-Binnun, Nava Moses, Elisha A quantitative physical model of the TMS-induced discharge artifacts in EEG |
title | A quantitative physical model of the TMS-induced discharge artifacts in EEG |
title_full | A quantitative physical model of the TMS-induced discharge artifacts in EEG |
title_fullStr | A quantitative physical model of the TMS-induced discharge artifacts in EEG |
title_full_unstemmed | A quantitative physical model of the TMS-induced discharge artifacts in EEG |
title_short | A quantitative physical model of the TMS-induced discharge artifacts in EEG |
title_sort | quantitative physical model of the tms-induced discharge artifacts in eeg |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6063435/ https://www.ncbi.nlm.nih.gov/pubmed/30016315 http://dx.doi.org/10.1371/journal.pcbi.1006177 |
work_keys_str_mv | AT frechedominik aquantitativephysicalmodelofthetmsinduceddischargeartifactsineeg AT naimfeiljodie aquantitativephysicalmodelofthetmsinduceddischargeartifactsineeg AT peledavi aquantitativephysicalmodelofthetmsinduceddischargeartifactsineeg AT levitbinnunnava aquantitativephysicalmodelofthetmsinduceddischargeartifactsineeg AT moseselisha aquantitativephysicalmodelofthetmsinduceddischargeartifactsineeg AT frechedominik quantitativephysicalmodelofthetmsinduceddischargeartifactsineeg AT naimfeiljodie quantitativephysicalmodelofthetmsinduceddischargeartifactsineeg AT peledavi quantitativephysicalmodelofthetmsinduceddischargeartifactsineeg AT levitbinnunnava quantitativephysicalmodelofthetmsinduceddischargeartifactsineeg AT moseselisha quantitativephysicalmodelofthetmsinduceddischargeartifactsineeg |