Cargando…
Nonparametric test for connectivity detection in multivariate autoregressive networks and application to multiunit activity data
Directed connectivity inference has become a cornerstone in neuroscience to analyze multivariate data from neuroimaging and electrophysiological techniques. Here we propose a nonparametric significance method to test the nonzero values of multivariate autoregressive model to infer interactions in re...
Autores principales: | Gilson, M., Tauste Campo, A., Chen, X., Thiele, A., Deco, G. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MIT Press
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6063719/ https://www.ncbi.nlm.nih.gov/pubmed/30090871 http://dx.doi.org/10.1162/NETN_a_00019 |
Ejemplares similares
-
Multiunit housing /
por: Broto, Carles
Publicado: (2000) -
Exploring sparse connectivity in the motor system using multivariate autoregression analysis
por: Rodriguez-Rojas, Rafael, et al.
Publicado: (2007) -
Robust multivariate nonparametric tests for detection of two-sample location shift in clinical trials
por: Jiang, Xuejun, et al.
Publicado: (2018) -
Large-scale directed network inference with multivariate transfer entropy and hierarchical statistical testing
por: Novelli, Leonardo, et al.
Publicado: (2019) -
Model-based whole-brain effective connectivity to study distributed cognition in health and disease
por: Gilson, Matthieu, et al.
Publicado: (2020)