Cargando…
Primary human nasal epithelial cells: a source of poly (I:C) LMW-induced IL-6 production
Infection plays a significant role in the relapse of chronic rhinosinusitis (CRS), however, the role of primary human nasal epithelial cells (HNECs) in this process is largely unknown. Here, we determined the effect of Toll-like receptor (TLR) agonists and inflammatory cytokines on mucosal barrier i...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6063928/ https://www.ncbi.nlm.nih.gov/pubmed/30054566 http://dx.doi.org/10.1038/s41598-018-29765-0 |
Sumario: | Infection plays a significant role in the relapse of chronic rhinosinusitis (CRS), however, the role of primary human nasal epithelial cells (HNECs) in this process is largely unknown. Here, we determined the effect of Toll-like receptor (TLR) agonists and inflammatory cytokines on mucosal barrier integrity and immune response of HNECs. TLR 1–9 agonists and inflammatory cytokines were applied to submerged and/or air-liquid interface (ALI) cultures of HNECs from CRS patients and controls for 24 hours. Interleukin-6 (IL-6) protein levels were determined by ELISA. Mucosal barrier integrity was measured via Transepithelial Electrical Resistance and passage of fluorescently-labelled dextrans. IL-1β and IFN- γ significantly increased IL-6 production in HNECs derived from CRS patients and controls, however, a dose-dependent effect was observed in CRS-derived HNECs only. Stimulation with Poly (I:C) LMW induced a 15 to 17 fold increase in IL-6 production by HNEC-ALI control cells (p < 0.05) and HNEC-ALI-CRS cells (p = 0.004) whilst a 2.5 fold increase was observed in CRS HNEC submerged cultures. Priming of cells with Poly (I:C) LMW reduced subsequent IL-6 secretion upon stimulation with TLR 2–4 agonists. Poly (I:C) LMW exerts a potent pro-inflammatory effect on HNECs and reduces a subsequent immune activation by TLR agonists. |
---|