Cargando…
Association of plasma apolipoprotein CIII, high sensitivity C-reactive protein and tumor necrosis factor-α contributes to the clinical features of coronary heart disease in Li and Han ethnic groups in China
BACKGROUND: Apolipoprotein CIII (apoCIII) is an independent risk for coronary heart disease (CHD). In this study, we investigated the associations among plasma apoCIII, hs-CRP and TNF-α levels and their roles in the clinical features of CHD in the Li and Han ethnic groups in China. METHODS: A cohort...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6064080/ https://www.ncbi.nlm.nih.gov/pubmed/30053815 http://dx.doi.org/10.1186/s12944-018-0830-5 |
Sumario: | BACKGROUND: Apolipoprotein CIII (apoCIII) is an independent risk for coronary heart disease (CHD). In this study, we investigated the associations among plasma apoCIII, hs-CRP and TNF-α levels and their roles in the clinical features of CHD in the Li and Han ethnic groups in China. METHODS: A cohort of 474 participants was recruited (238 atherosclerotic patients and 236 healthy controls) from the Li and Han ethnic groups. Blood samples were obtained to evaluate apoCIII, TNF-α, hs-CRP and lipid profiles. Chi-squared, t-tests, and Kruskal–Wallis or Wilcoxon–Mann–Whitney tests, Pearson or Spearman correlation tests and multiple unconditional logistic regression were employed to analyze lipid profiles and variations in plasma apoCIII, TNF-α, hs-CRP in subgroups of CHD and their contributions to CHD using SPSS version 20.0 software. RESULTS: Compared to healthy participants, unfavorable lipid profiles were identified in CHD patients with enhanced systolic pressure, diastolic pressure, fasting blood sugar (FBS), TG, TC, LDL-C, apoB, Lp(a) (P < 0.05, TC and Lp(a); P < 0.01, FBS, TG, LDL-C, apoB); and lower HDL-C and apoAI (P < 0.05). Plasma apoCIII, TNF-α and hs-CRP levels were higher in CHD individuals (16.77 ± 5.98 mg/dL vs. 10.91 ± 4.97 mg/dL; 17.23 ± 6.34 pg/mL vs. 9.49 ± 3.88 pg/mL; 9.55 ± 7.32 mg/L vs. 2.14 ± 1.56 mg/L; P < 0.01 vs. healthy participants). Identical patterns were obtained in the Li and Han groups (16.46 ± 6.08 mg/dL vs. 11.72 ± 5.16 mg/dL; 15.71 ± 5.52 pg/mL vs. 9.74 ± 4.31 pg/mL; 8.21 ± 7.09 mg/L vs. 2.15 ± 1.51 mg/L in Li people; 17.05 ± 5.90 mg/dL vs. 10.07 ± 4.63 mg/dL; 18.59 ± 6.73 pg/mL vs. 9.23 ± 3.38 pg/mL; 10.75 ± 7.44 mg/L vs. 2.12 ± 1.63 mg/L in Han people; P < 0.01). Paired comparisons of subgroups with stable angina, unstable angina, and acute myocardial infarction (AMI) revealed significant variation in plasma levels of apoCIII, TNF-α and hs-CRP (P < 0.01), but not among subgroups with mild, moderate and severe stenosis (P > 0.05). Plasma apoCIII, TNF-α and hs-CRP contributed to the development of CHD (OR = 2.554, 7.252, 6.035, P < 0.01) with paired correlations in CHD patients (apoCIII vs. TNF-α, r = 0.425; apoCIII vs. hs-CRP, r = 0.319; TNF-α vs. hs-CRP, r = 0.400, P < 0.01). CONCLUSIONS: Association among plasma apoCIII, hs-CRP and TNF-α interacts with unfavorable lipid profiles to contribute to the clinical features of CHD with stable angina, unstable angina, and AMI in the Li and Han ethnic groups in China. |
---|