Cargando…

Factors affecting intraosseous pressure measurement

BACKGROUND: Although a raised intraosseous pressure (IOP) has been found in osteoarthritis and osteonecrosis, the normal physiology of subchondral circulation is poorly understood. We developed an animal model and explored the physiology of normal subchondral perfusion and IOP. METHODS: In 21 anaest...

Descripción completa

Detalles Bibliográficos
Autores principales: Beverly, Michael, Murray, David
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6064116/
https://www.ncbi.nlm.nih.gov/pubmed/30055642
http://dx.doi.org/10.1186/s13018-018-0877-z
_version_ 1783342668199231488
author Beverly, Michael
Murray, David
author_facet Beverly, Michael
Murray, David
author_sort Beverly, Michael
collection PubMed
description BACKGROUND: Although a raised intraosseous pressure (IOP) has been found in osteoarthritis and osteonecrosis, the normal physiology of subchondral circulation is poorly understood. We developed an animal model and explored the physiology of normal subchondral perfusion and IOP. METHODS: In 21 anaesthetised rabbits, 44 intraosseous needles were placed in the subchondral bone of the femoral head (n = 6), femoral condyle (n = 7) or proximal tibia (n = 31). Needles were connected to pressure transducers and a chart recorder. In 14 subjects, the proximal femoral artery and vein were clamped alternately. In five subjects, arterial pressure was measured simultaneously in the opposite femoral artery. RESULTS: The average IOP at all 44 sites was 24.5 mmHg with variability within SD 6.8 and between subjects SD 11.5. IOP was not significantly influenced by gender, weight, site or size of a needle. Needle clearance by flushing caused a prolonged drop in IOP whereas after clearance by aspiration, recovery was rapid. IOP recordings exhibited wave patterns synchronous with the arterial pulse, with respiration and with drug circulation time. There was a correlation between IOP and blood pressure (13 sites in 5 subjects, Pearson correlation 0.829, p < 0.0005). There was a correlation between IOP and the associated pulse pressure (PP) in 44 sites among 21 subjects (Pearson correlation 0.788, p < 0.001). In 14 subjects (31 sites), arterial occlusion caused a significant reduction in IOP and loss of PP (p < 0.0001). Venous occlusion significantly raised IOP with preservation of the PP (p < 0.012). CONCLUSION: Our study shows that subchondral cancellous bone behaves as a perfused tissue and that IOP is mainly a reflection of arterial supply. A single measure of IOP is variable and reflects only perfusion at the needle tip rather than being a measure of venous back pressure. Alternate proximal vessel clamping offers a new means of exploring the physiology of subchondral perfusion. We describe a model that will allow further study of IOP such as during loading.
format Online
Article
Text
id pubmed-6064116
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-60641162018-08-01 Factors affecting intraosseous pressure measurement Beverly, Michael Murray, David J Orthop Surg Res Research Article BACKGROUND: Although a raised intraosseous pressure (IOP) has been found in osteoarthritis and osteonecrosis, the normal physiology of subchondral circulation is poorly understood. We developed an animal model and explored the physiology of normal subchondral perfusion and IOP. METHODS: In 21 anaesthetised rabbits, 44 intraosseous needles were placed in the subchondral bone of the femoral head (n = 6), femoral condyle (n = 7) or proximal tibia (n = 31). Needles were connected to pressure transducers and a chart recorder. In 14 subjects, the proximal femoral artery and vein were clamped alternately. In five subjects, arterial pressure was measured simultaneously in the opposite femoral artery. RESULTS: The average IOP at all 44 sites was 24.5 mmHg with variability within SD 6.8 and between subjects SD 11.5. IOP was not significantly influenced by gender, weight, site or size of a needle. Needle clearance by flushing caused a prolonged drop in IOP whereas after clearance by aspiration, recovery was rapid. IOP recordings exhibited wave patterns synchronous with the arterial pulse, with respiration and with drug circulation time. There was a correlation between IOP and blood pressure (13 sites in 5 subjects, Pearson correlation 0.829, p < 0.0005). There was a correlation between IOP and the associated pulse pressure (PP) in 44 sites among 21 subjects (Pearson correlation 0.788, p < 0.001). In 14 subjects (31 sites), arterial occlusion caused a significant reduction in IOP and loss of PP (p < 0.0001). Venous occlusion significantly raised IOP with preservation of the PP (p < 0.012). CONCLUSION: Our study shows that subchondral cancellous bone behaves as a perfused tissue and that IOP is mainly a reflection of arterial supply. A single measure of IOP is variable and reflects only perfusion at the needle tip rather than being a measure of venous back pressure. Alternate proximal vessel clamping offers a new means of exploring the physiology of subchondral perfusion. We describe a model that will allow further study of IOP such as during loading. BioMed Central 2018-07-28 /pmc/articles/PMC6064116/ /pubmed/30055642 http://dx.doi.org/10.1186/s13018-018-0877-z Text en © The Author(s). 2018 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Research Article
Beverly, Michael
Murray, David
Factors affecting intraosseous pressure measurement
title Factors affecting intraosseous pressure measurement
title_full Factors affecting intraosseous pressure measurement
title_fullStr Factors affecting intraosseous pressure measurement
title_full_unstemmed Factors affecting intraosseous pressure measurement
title_short Factors affecting intraosseous pressure measurement
title_sort factors affecting intraosseous pressure measurement
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6064116/
https://www.ncbi.nlm.nih.gov/pubmed/30055642
http://dx.doi.org/10.1186/s13018-018-0877-z
work_keys_str_mv AT beverlymichael factorsaffectingintraosseouspressuremeasurement
AT murraydavid factorsaffectingintraosseouspressuremeasurement