Cargando…
K-Y™ jelly inhibits increase in endotracheal tube cuff pressure during nitrous oxide exposure in vitro
BACKGROUND: The increase in endotracheal tube cuff pressure due to nitrous oxide diffusion is a well-known risk during general anesthesia using nitrous oxide. We hypothesized that lubricating endotracheal tube cuffs with K-Y™ Jelly might inhibit the increase in cuff pressure that occurs during expos...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6064625/ https://www.ncbi.nlm.nih.gov/pubmed/30055572 http://dx.doi.org/10.1186/s12871-018-0566-9 |
Sumario: | BACKGROUND: The increase in endotracheal tube cuff pressure due to nitrous oxide diffusion is a well-known risk during general anesthesia using nitrous oxide. We hypothesized that lubricating endotracheal tube cuffs with K-Y™ Jelly might inhibit the increase in cuff pressure that occurs during exposure to nitrous oxide. METHODS: We used two types of endotracheal tube cuffs: one made from ultrathin polyurethane (PU) and another made from conventional polyvinyl chloride (PVC). Using a pediatric trachea model, which consisted of an acrylic cylinder with an internal diameter of 12 mm, we measured changes in the cuff pressure during nitrous oxide exposure in size 5.0-mm internal diameter endotracheal tubes with each type of cuff, with and without lubrication with K-Y™ Jelly. RESULTS: During nitrous oxide exposure, the increase in cuff pressure was significantly lower in the lubricated cuffs than in the non-lubricated cuffs in both types of cuffs (PVC, P < 0.0001; PU, P < 0.0001). However, the cuff compliance in the trachea model was unaffected by lubrication in both types of cuffs. CONCLUSIONS: Lubrication of endotracheal tube cuffs with K-Y™ Jelly may effectively delay the increase in cuff pressure that occurs during general anesthesia using nitrous oxide. |
---|