Cargando…

Receptorphin: A conserved peptide derived from the sequence of the opioid receptor, with opioid displacement activity and potent antiproliferative actions in tumor cells

BACKGROUND: In addition to endogenous opioids, a number of peptide sequences, derived from endogenous (hemorphins, alphaS1-casomorphin), and exogenous proteins (casomorphins, exorphins) have been reported, possessing opioid activity. In the present work, we report the identification of a new peptide...

Descripción completa

Detalles Bibliográficos
Autores principales: Kampa, Marilena, Loukas, Spyros, Tsapis, Andreas, Castanas, Elias
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2001
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC60649/
https://www.ncbi.nlm.nih.gov/pubmed/11737867
http://dx.doi.org/10.1186/1471-2210-1-9
Descripción
Sumario:BACKGROUND: In addition to endogenous opioids, a number of peptide sequences, derived from endogenous (hemorphins, alphaS1-casomorphin), and exogenous proteins (casomorphins, exorphins) have been reported, possessing opioid activity. In the present work, we report the identification of a new peptide, receptorphin (Tyr-Ile-Phe-Asn-Leu), derived from the sequence of the second transmembrane loop of the opioid receptor. This sequence is unique for the opioid receptor, and conserved in all species and receptor-types. RESULTS AND DISCUSSION: Receptorphin competes for opioid binding, presenting a kappa-receptor interaction, while it binds equally to delta- and mu- opioid and somatostatin-binding sites, and inhibits the cell proliferation of a number of human cancer cell lines, in a dose-dependent and reversible manner, at the picomolar or the nanomolar range. Receptorphin shows a preferential action on prostate cancer cells. CONCLUSION: Our work identifies, for the first time a peptide, in a receptor sequence, possessing ligand-agonistic activities. A hypothesis, based on receptorphin liberation after cell death, is presented, which could tentatively explain the time-lag observed during opioid antiproliferative action.