Cargando…
An Algorithm Based on Deep Learning for Predicting In‐Hospital Cardiac Arrest
BACKGROUND: In‐hospital cardiac arrest is a major burden to public health, which affects patient safety. Although traditional track‐and‐trigger systems are used to predict cardiac arrest early, they have limitations, with low sensitivity and high false‐alarm rates. We propose a deep learning–based e...
Autores principales: | Kwon, Joon‐myoung, Lee, Youngnam, Lee, Yeha, Lee, Seungwoo, Park, Jinsik |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6064911/ https://www.ncbi.nlm.nih.gov/pubmed/29945914 http://dx.doi.org/10.1161/JAHA.118.008678 |
Ejemplares similares
-
Deep Learning in the Medical Domain: Predicting Cardiac Arrest Using Deep Learning
por: Lee, Youngnam, et al.
Publicado: (2018) -
Validation of deep-learning-based triage and acuity score using a large national dataset
por: Kwon, Joon-myoung, et al.
Publicado: (2018) -
Deep Learning–Based Algorithm for Detecting Aortic Stenosis Using Electrocardiography
por: Kwon, Joon‐Myoung, et al.
Publicado: (2020) -
Artificial intelligence algorithm for predicting cardiac arrest using electrocardiography
por: Kwon, Joon-myoung, et al.
Publicado: (2020) -
Artificial intelligence algorithm to predict the need for critical care in prehospital emergency medical services
por: Kang, Da-Young, et al.
Publicado: (2020)