Cargando…
Best hyperspectral indices for assessing leaf chlorophyll content in a degraded temperate vegetation
Extensive studies have focused on assessing leaf chlorophyll content through spectral indices; however, the accuracy is weakened by limited wavebands and coarse resolution. With hundreds of wavebands, hyperspectral data can substantially capture the essential absorption features of leaf chlorophyll;...
Autores principales: | Peng, Yu, Fan, Min, Wang, Qinghui, Lan, Wenjuan, Long, Yating |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6065332/ https://www.ncbi.nlm.nih.gov/pubmed/30073068 http://dx.doi.org/10.1002/ece3.4229 |
Ejemplares similares
-
Off-Nadir Hyperspectral Sensing for Estimation of Vertical Profile of Leaf Chlorophyll Content within Wheat Canopies
por: Kong, Weiping, et al.
Publicado: (2017) -
Non-Destructive Detection of Tea Leaf Chlorophyll Content Using Hyperspectral Reflectance and Machine Learning Algorithms
por: Sonobe, Rei, et al.
Publicado: (2020) -
Mapping leaf metal content over industrial brownfields using airborne hyperspectral imaging and optimized vegetation indices
por: Lassalle, Guillaume, et al.
Publicado: (2021) -
Estimation of leaf nutrition status in degraded vegetation based on field survey and hyperspectral data
por: Peng, Yu, et al.
Publicado: (2020) -
High throughput analysis of leaf chlorophyll content in sorghum using RGB, hyperspectral, and fluorescence imaging and sensor fusion
por: Zhang, Huichun, et al.
Publicado: (2022)