Cargando…
Ambient Processed, Water-Stable, Aqueous-Gated sub 1 V n-type Carbon Nanotube Field Effect Transistor
In this paper we report for the first time an n-type carbon nanotube field effect transistor which is air- and water-stable, a necessary requirement for electrolyte gated CMOS circuit operation. The device is obtained through a simple process, where the native p-type transistor is converted to an n-...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6065383/ https://www.ncbi.nlm.nih.gov/pubmed/30061700 http://dx.doi.org/10.1038/s41598-018-29882-w |
Sumario: | In this paper we report for the first time an n-type carbon nanotube field effect transistor which is air- and water-stable, a necessary requirement for electrolyte gated CMOS circuit operation. The device is obtained through a simple process, where the native p-type transistor is converted to an n-type. This conversion is achieved by applying a tailor composed lipophilic membrane containing ion exchanger on the active channel area of the transistor. To demonstrate the use of this transistor in sensing applications, a pH sensor is fabricated. An electrolyte gated CMOS inverter using the herein proposed novel n-type transistor and a classical p-type transistor is demonstrated. |
---|