Cargando…

Identification of individual cells from z-stacks of bright-field microscopy images

Obtaining single cell data from time-lapse microscopy images is critical for quantitative biology, but bottlenecks in cell identification and segmentation must be overcome. We propose a novel, versatile method that uses machine learning classifiers to identify cell morphologies from z-stack bright-f...

Descripción completa

Detalles Bibliográficos
Autores principales: Lugagne, Jean-Baptiste, Jain, Srajan, Ivanovitch, Pierre, Ben Meriem, Zacchary, Vulin, Clément, Fracassi, Chiara, Batt, Gregory, Hersen, Pascal
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6065389/
https://www.ncbi.nlm.nih.gov/pubmed/30061662
http://dx.doi.org/10.1038/s41598-018-29647-5
Descripción
Sumario:Obtaining single cell data from time-lapse microscopy images is critical for quantitative biology, but bottlenecks in cell identification and segmentation must be overcome. We propose a novel, versatile method that uses machine learning classifiers to identify cell morphologies from z-stack bright-field microscopy images. We show that axial information is enough to successfully classify the pixels of an image, without the need to consider in focus morphological features. This fast, robust method can be used to identify different cell morphologies, including the features of E. coli, S. cerevisiae and epithelial cells, even in mixed cultures. Our method demonstrates the potential of acquiring and processing Z-stacks for single-layer, single-cell imaging and segmentation.