Cargando…
Identification of individual cells from z-stacks of bright-field microscopy images
Obtaining single cell data from time-lapse microscopy images is critical for quantitative biology, but bottlenecks in cell identification and segmentation must be overcome. We propose a novel, versatile method that uses machine learning classifiers to identify cell morphologies from z-stack bright-f...
Autores principales: | Lugagne, Jean-Baptiste, Jain, Srajan, Ivanovitch, Pierre, Ben Meriem, Zacchary, Vulin, Clément, Fracassi, Chiara, Batt, Gregory, Hersen, Pascal |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6065389/ https://www.ncbi.nlm.nih.gov/pubmed/30061662 http://dx.doi.org/10.1038/s41598-018-29647-5 |
Ejemplares similares
-
Balancing a genetic toggle switch by real-time feedback control and periodic forcing
por: Lugagne, Jean-Baptiste, et al.
Publicado: (2017) -
Long-term tracking of budding yeast cells in brightfield microscopy: CellStar and the Evaluation Platform
por: Versari, Cristian, et al.
Publicado: (2017) -
Growing Yeast into Cylindrical Colonies
por: Vulin, Clément, et al.
Publicado: (2014) -
A microfluidic device for inferring metabolic landscapes in yeast monolayer colonies
por: Marinkovic, Zoran S, et al.
Publicado: (2019) -
Benchmark for multi-cellular segmentation of bright field microscopy images
por: Zaritsky, Assaf, et al.
Publicado: (2013)