Cargando…

Growth kinetics of endosymbiont Wolbachia in the common bed bug, Cimex lectularius

The common bed bug, Cimex lectularius harbors the endosymbiotic microorganism, Wolbachia (wCle), in a gonad-associated bacteriome as an obligate nutritional mutualist. The obligatory nature of this association suggests that all individuals in C. lectularius populations would be infected with wCle. H...

Descripción completa

Detalles Bibliográficos
Autores principales: Fisher, Michael L., Watson, David W., Osborne, Jason A., Mochizuki, Hiroyuki, Breen, Matthew, Schal, Coby
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6065412/
https://www.ncbi.nlm.nih.gov/pubmed/30061694
http://dx.doi.org/10.1038/s41598-018-29682-2
Descripción
Sumario:The common bed bug, Cimex lectularius harbors the endosymbiotic microorganism, Wolbachia (wCle), in a gonad-associated bacteriome as an obligate nutritional mutualist. The obligatory nature of this association suggests that all individuals in C. lectularius populations would be infected with wCle. However, studies spanning the past several decades have reported variation in both infection frequency and relative abundance of wCle in field-collected samples of bed bugs. Since the growth kinetics of wCle is poorly understood, the objective of this study was to quantify wCle over the life cycle of two strains of C. lectularius. Our results highlight that wCle is dynamic during bed bug development, changing relative to life stage, intermolt stage, and blood-fed status. These results suggest new hypotheses about the coordination of Wolbachia growth and regression with its host’s physiology and endocrine events. The observed quantitative modulation of wCle during the bed bug life cycle and during periods of starvation may explain the disparities in wCle infections reported in field-collected C. lectularius.