Cargando…
Bayesian variable selection with graphical structure learning: Applications in integrative genomics
Significant advances in biotechnology have allowed for simultaneous measurement of molecular data across multiple genomic, epigenomic and transcriptomic levels from a single tumor/patient sample. This has motivated systematic data-driven approaches to integrate multi-dimensional structured datasets,...
Autores principales: | Kundu, Suprateek, Cheng, Yichen, Shin, Minsuk, Manyam, Ganiraju, Mallick, Bani K., Baladandayuthapani, Veerabhadran |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6066211/ https://www.ncbi.nlm.nih.gov/pubmed/30059495 http://dx.doi.org/10.1371/journal.pone.0195070 |
Ejemplares similares
-
Integrating multi-platform genomic data using hierarchical Bayesian relevance vector machines
por: Srivastava, Sanvesh, et al.
Publicado: (2013) -
Bayesian methods for expression-based integration of various types of genomics data
por: Jennings, Elizabeth M, et al.
Publicado: (2013) -
iBAG: integrative Bayesian analysis of high-dimensional multiplatform
genomics data
por: Wang, Wenting, et al.
Publicado: (2013) -
Bayesian graphical models for modern biological applications
por: Ni, Yang, et al.
Publicado: (2021) -
Bayesian Covariate-Dependent Gaussian Graphical Models with Varying Structure
por: Ni, Yang, et al.
Publicado: (2022)