Cargando…
Development and characterization of penta-flowering and triple-flowering genotypes in garden pea (Pisum sativum L. var. hortense)
This study reports the development of a garden pea genotype ‘VRPM–901–5’ producing five flowers per peduncle at multiple flowering nodes, by using single plant selection approach from a cross ‘VL-8 × PC-531’. In addition, five other stable genetic stocks, namely VRPM-501, VRPM–502, VRPM–503, VRPM–90...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6066227/ https://www.ncbi.nlm.nih.gov/pubmed/30059526 http://dx.doi.org/10.1371/journal.pone.0201235 |
Sumario: | This study reports the development of a garden pea genotype ‘VRPM–901–5’ producing five flowers per peduncle at multiple flowering nodes, by using single plant selection approach from a cross ‘VL-8 × PC-531’. In addition, five other stable genetic stocks, namely VRPM-501, VRPM–502, VRPM–503, VRPM–901–3 and VRPSeL–1 producing three flowers per peduncle at multiple flowering nodes were also developed. All these unique genotypes were of either mid- or late- maturity groups. Furthermore, these multi-flowering genotypes were identified during later generations (F(4) onward), which might be because of fixation of certain QTLs or recessive gene combinations. Surprisingly, a common parent PC–531, imparting multi-flowering trait in ten cross combinations was identified. Thus, the genotype PC–531 seems to harbor some recessive gene(s) or QTLs that in certain combination(s) express the multi-flowering trait. The interaction between genotype and environment showed that temperature (11–20°C) plays a key role in expression of the multi-flowering trait besides genetic background. Furthermore, the possible relationship between various multi-flowering regulatory genes such as FN, FNA, NEPTUNE, SN, DNE, HR and environmental factors was also explored, and a comprehensive model explaining the multi-flowering trait in garden pea is proposed. |
---|