Cargando…

Mass-size distribution and concentration of metals from personal exposure to arc welding fume in pipeline construction: a case report

We investigate exposure to welding fume metals in pipeline construction, which are responsible for severe respiratory problems. We analyzed air samples obtained using size-fractioning cascade impactors that were attached to the welders performing shielded metal and gas tungsten arc welding outdoors....

Descripción completa

Detalles Bibliográficos
Autores principales: YANG, Show-Yi, LIN, Jia-Ming, YOUNG, Li-Hao, CHANG, Ching-Wen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Institute of Occupational Safety and Health, Japan 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6066430/
https://www.ncbi.nlm.nih.gov/pubmed/29628454
http://dx.doi.org/10.2486/indhealth.2017-0197
Descripción
Sumario:We investigate exposure to welding fume metals in pipeline construction, which are responsible for severe respiratory problems. We analyzed air samples obtained using size-fractioning cascade impactors that were attached to the welders performing shielded metal and gas tungsten arc welding outdoors. Iron, aluminum, zinc, chromium, manganese, copper, nickel, and lead concentrations in the water-soluble (WS) and water-insoluble (WI) portions were determined separately, using inductively coupled plasma mass spectrometry. The mass-size distribution of welding fume matches a log-normal distribution with two modes. The metal concentrations in the welding fume were ranked as follows: Fe>Al>Zn>Cr>Mn>Ni>Cu>Pb. In the WS portion, the capacities of metals dissolving in water are correlated with the metal species but particle sizes. Particularly, Zn, Mn, and Pb exhibit relatively higher capacities than Cu, Cr, Al, Fe, and Ni. Exposure of the gas-exchange region of the lungs to WS metals were in the range of 4.9% to 34.6% of the corresponding metals in air by considering the particle-size selection in lungs, metal composition by particle size, and the capacities of each metal dissolving in water.