Cargando…
A Novel Transfer Learning Approach to Enhance Deep Neural Network Classification of Brain Functional Connectomes
Early diagnosis remains a significant challenge for many neurological disorders, especially for rare disorders where studying large cohorts is not possible. A novel solution that investigators have undertaken is combining advanced machine learning algorithms with resting-state functional Magnetic Re...
Autores principales: | Li, Hailong, Parikh, Nehal A., He, Lili |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6066582/ https://www.ncbi.nlm.nih.gov/pubmed/30087587 http://dx.doi.org/10.3389/fnins.2018.00491 |
Ejemplares similares
-
Early Prediction of Cognitive Deficit in Very Preterm Infants Using Brain Structural Connectome With Transfer Learning Enhanced Deep Convolutional Neural Networks
por: Chen, Ming, et al.
Publicado: (2020) -
Objective and Automated Detection of Diffuse White Matter Abnormality in Preterm Infants Using Deep Convolutional Neural Networks
por: Li, Hailong, et al.
Publicado: (2019) -
Early prediction of cognitive deficits in very preterm infants using functional connectome data in an artificial neural network framework
por: He, Lili, et al.
Publicado: (2018) -
Deep Multimodal Learning From MRI and Clinical Data for Early Prediction of Neurodevelopmental Deficits in Very Preterm Infants
por: He, Lili, et al.
Publicado: (2021) -
Short-Term Classification Learning Promotes Rapid Global Improvements of Information Processing in Human Brain Functional Connectome
por: Zippo, Antonio G., et al.
Publicado: (2020)