Cargando…
Innovative drugs, chemicals, and enzymes within the animal production chain
The alarming number of recently reported human illnesses with bacterial infections resistant to multiple antibacterial agents has become a serious concern in recent years. This phenomenon is a core challenge for both the medical and animal health communities, since the use of antibiotics has formed...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6066918/ https://www.ncbi.nlm.nih.gov/pubmed/30060767 http://dx.doi.org/10.1186/s13567-018-0559-1 |
_version_ | 1783343057059446784 |
---|---|
author | Hassan, Yousef I. Lahaye, Ludovic Gong, Max M. Peng, Jian Gong, Joshua Liu, Song Gay, Cyril G. Yang, Chengbo |
author_facet | Hassan, Yousef I. Lahaye, Ludovic Gong, Max M. Peng, Jian Gong, Joshua Liu, Song Gay, Cyril G. Yang, Chengbo |
author_sort | Hassan, Yousef I. |
collection | PubMed |
description | The alarming number of recently reported human illnesses with bacterial infections resistant to multiple antibacterial agents has become a serious concern in recent years. This phenomenon is a core challenge for both the medical and animal health communities, since the use of antibiotics has formed the cornerstone of modern medicine for treating bacterial infections. The empirical benefits of using antibiotics to address animal health issues in animal agriculture (using therapeutic doses) and increasing the overall productivity of animals (using sub-therapeutic doses) are well established. The use of antibiotics to enhance profitability margins in the animal production industry is still practiced worldwide. Although many technical and economic reasons gave rise to these practices, the continued emergence of antimicrobial resistant bacteria is furthering the need to reduce the use of medically important antibiotics. This will require improving on-farm management and biosecurity practices, and the development of effective antibiotic alternatives that will reduce the dependence on antibiotics within the animal industry in the foreseeable future. A number of approaches are being closely scrutinized and optimized to achieve this goal, including the development of promising antibiotic alternatives to control bacterial virulence through quorum-sensing disruption, the use of synthetic polymers and nanoparticles, the exploitation of recombinant enzymes/proteins (such as glucose oxidases, alkaline phosphatases and proteases), and the use of phytochemicals. This review explores the most recent approaches within this context and provides a summary of practical mitigation strategies for the extensive use of antibiotics within the animal production chain in addition to several future challenges that need to be addressed. |
format | Online Article Text |
id | pubmed-6066918 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-60669182018-08-02 Innovative drugs, chemicals, and enzymes within the animal production chain Hassan, Yousef I. Lahaye, Ludovic Gong, Max M. Peng, Jian Gong, Joshua Liu, Song Gay, Cyril G. Yang, Chengbo Vet Res Review The alarming number of recently reported human illnesses with bacterial infections resistant to multiple antibacterial agents has become a serious concern in recent years. This phenomenon is a core challenge for both the medical and animal health communities, since the use of antibiotics has formed the cornerstone of modern medicine for treating bacterial infections. The empirical benefits of using antibiotics to address animal health issues in animal agriculture (using therapeutic doses) and increasing the overall productivity of animals (using sub-therapeutic doses) are well established. The use of antibiotics to enhance profitability margins in the animal production industry is still practiced worldwide. Although many technical and economic reasons gave rise to these practices, the continued emergence of antimicrobial resistant bacteria is furthering the need to reduce the use of medically important antibiotics. This will require improving on-farm management and biosecurity practices, and the development of effective antibiotic alternatives that will reduce the dependence on antibiotics within the animal industry in the foreseeable future. A number of approaches are being closely scrutinized and optimized to achieve this goal, including the development of promising antibiotic alternatives to control bacterial virulence through quorum-sensing disruption, the use of synthetic polymers and nanoparticles, the exploitation of recombinant enzymes/proteins (such as glucose oxidases, alkaline phosphatases and proteases), and the use of phytochemicals. This review explores the most recent approaches within this context and provides a summary of practical mitigation strategies for the extensive use of antibiotics within the animal production chain in addition to several future challenges that need to be addressed. BioMed Central 2018-07-31 2018 /pmc/articles/PMC6066918/ /pubmed/30060767 http://dx.doi.org/10.1186/s13567-018-0559-1 Text en © The Author(s) 2018 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Review Hassan, Yousef I. Lahaye, Ludovic Gong, Max M. Peng, Jian Gong, Joshua Liu, Song Gay, Cyril G. Yang, Chengbo Innovative drugs, chemicals, and enzymes within the animal production chain |
title | Innovative drugs, chemicals, and enzymes within the animal production chain |
title_full | Innovative drugs, chemicals, and enzymes within the animal production chain |
title_fullStr | Innovative drugs, chemicals, and enzymes within the animal production chain |
title_full_unstemmed | Innovative drugs, chemicals, and enzymes within the animal production chain |
title_short | Innovative drugs, chemicals, and enzymes within the animal production chain |
title_sort | innovative drugs, chemicals, and enzymes within the animal production chain |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6066918/ https://www.ncbi.nlm.nih.gov/pubmed/30060767 http://dx.doi.org/10.1186/s13567-018-0559-1 |
work_keys_str_mv | AT hassanyousefi innovativedrugschemicalsandenzymeswithintheanimalproductionchain AT lahayeludovic innovativedrugschemicalsandenzymeswithintheanimalproductionchain AT gongmaxm innovativedrugschemicalsandenzymeswithintheanimalproductionchain AT pengjian innovativedrugschemicalsandenzymeswithintheanimalproductionchain AT gongjoshua innovativedrugschemicalsandenzymeswithintheanimalproductionchain AT liusong innovativedrugschemicalsandenzymeswithintheanimalproductionchain AT gaycyrilg innovativedrugschemicalsandenzymeswithintheanimalproductionchain AT yangchengbo innovativedrugschemicalsandenzymeswithintheanimalproductionchain |