Cargando…

Energy shifts induce membrane sequestration of DraG in Rhodospirillum rubrum independent of the ammonium transporters and diazotrophic conditions

Metabolic regulation of Rhodospirillum rubrum nitrogenase is mediated at the post-translational level by the enzymes DraT and DraG when subjected to changes in nitrogen or energy status. DraT is activated during switch-off, while DraG is inactivated by reversible membrane association. We confirm her...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Helen, Waluk, Dominik, Dixon, Ray, Nordlund, Stefan, Norén, Agneta
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6067124/
https://www.ncbi.nlm.nih.gov/pubmed/30010831
http://dx.doi.org/10.1093/femsle/fny176
Descripción
Sumario:Metabolic regulation of Rhodospirillum rubrum nitrogenase is mediated at the post-translational level by the enzymes DraT and DraG when subjected to changes in nitrogen or energy status. DraT is activated during switch-off, while DraG is inactivated by reversible membrane association. We confirm here that the ammonium transporter, AmtB1, rather than its paralog AmtB2, is required for ammonium induced switch-off. Amongst several substitutions at the N100 position in DraG, only N100K failed to locate to the membrane following ammonium shock, suggesting loss of interaction through charge repulsion. When switch-off was induced by lowering energy levels, either by darkness during photosynthetic growth or oxygen depletion under respiratory conditions, reversible membrane sequestration of DraG was independent of AmtB proteins and occurred even under non-diazotrophic conditions. We propose that under these conditions, changes in redox status or possibly membrane potential induce interactions between DraG and another membrane protein in response to the energy status.