Cargando…
Genotypic variation in plant traits shapes herbivorous insect and ant communities on a foundation tree species
Community genetics aims to understand the effects of intraspecific genetic variation on community composition and diversity, thereby connecting community ecology with evolutionary biology. Multiple studies have shown that different plant genotypes harbor different communities of associated organisms...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6067713/ https://www.ncbi.nlm.nih.gov/pubmed/30063740 http://dx.doi.org/10.1371/journal.pone.0200954 |
_version_ | 1783343155356106752 |
---|---|
author | Barker, Hilary L. Holeski, Liza M. Lindroth, Richard L. |
author_facet | Barker, Hilary L. Holeski, Liza M. Lindroth, Richard L. |
author_sort | Barker, Hilary L. |
collection | PubMed |
description | Community genetics aims to understand the effects of intraspecific genetic variation on community composition and diversity, thereby connecting community ecology with evolutionary biology. Multiple studies have shown that different plant genotypes harbor different communities of associated organisms, such as insects. Yet, the mechanistic links that tie insect community composition to plant genetics are still not well understood. To shed light on these relationships, we explored variation in both plant traits (e.g., growth, phenology, defense) and herbivorous insect and ant communities on 328 replicated aspen (Populus tremuloides) genets grown in a common garden. We measured traits and visually surveyed insect communities annually in 2014 and 2015. We found that insect communities overall exhibited low heritability and were shaped primarily by relationships among key insects (i.e., aphids, ants, and free-feeders). Several tree traits affected insect communities and the presence/absence of species and functional groups. Of these traits, tree size and foliar phenology were the most important. Larger trees had denser (i.e., number of insects per unit tree size) and more diverse insect communities, while timing of bud break and bud set differentially influenced particular species and insect groups, especially leaf modifying insects. These findings will inform future research directed toward identification of plant genes and genetic regions that underlie the structure of associated insect communities. |
format | Online Article Text |
id | pubmed-6067713 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-60677132018-08-10 Genotypic variation in plant traits shapes herbivorous insect and ant communities on a foundation tree species Barker, Hilary L. Holeski, Liza M. Lindroth, Richard L. PLoS One Research Article Community genetics aims to understand the effects of intraspecific genetic variation on community composition and diversity, thereby connecting community ecology with evolutionary biology. Multiple studies have shown that different plant genotypes harbor different communities of associated organisms, such as insects. Yet, the mechanistic links that tie insect community composition to plant genetics are still not well understood. To shed light on these relationships, we explored variation in both plant traits (e.g., growth, phenology, defense) and herbivorous insect and ant communities on 328 replicated aspen (Populus tremuloides) genets grown in a common garden. We measured traits and visually surveyed insect communities annually in 2014 and 2015. We found that insect communities overall exhibited low heritability and were shaped primarily by relationships among key insects (i.e., aphids, ants, and free-feeders). Several tree traits affected insect communities and the presence/absence of species and functional groups. Of these traits, tree size and foliar phenology were the most important. Larger trees had denser (i.e., number of insects per unit tree size) and more diverse insect communities, while timing of bud break and bud set differentially influenced particular species and insect groups, especially leaf modifying insects. These findings will inform future research directed toward identification of plant genes and genetic regions that underlie the structure of associated insect communities. Public Library of Science 2018-07-31 /pmc/articles/PMC6067713/ /pubmed/30063740 http://dx.doi.org/10.1371/journal.pone.0200954 Text en © 2018 Barker et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Barker, Hilary L. Holeski, Liza M. Lindroth, Richard L. Genotypic variation in plant traits shapes herbivorous insect and ant communities on a foundation tree species |
title | Genotypic variation in plant traits shapes herbivorous insect and ant communities on a foundation tree species |
title_full | Genotypic variation in plant traits shapes herbivorous insect and ant communities on a foundation tree species |
title_fullStr | Genotypic variation in plant traits shapes herbivorous insect and ant communities on a foundation tree species |
title_full_unstemmed | Genotypic variation in plant traits shapes herbivorous insect and ant communities on a foundation tree species |
title_short | Genotypic variation in plant traits shapes herbivorous insect and ant communities on a foundation tree species |
title_sort | genotypic variation in plant traits shapes herbivorous insect and ant communities on a foundation tree species |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6067713/ https://www.ncbi.nlm.nih.gov/pubmed/30063740 http://dx.doi.org/10.1371/journal.pone.0200954 |
work_keys_str_mv | AT barkerhilaryl genotypicvariationinplanttraitsshapesherbivorousinsectandantcommunitiesonafoundationtreespecies AT holeskilizam genotypicvariationinplanttraitsshapesherbivorousinsectandantcommunitiesonafoundationtreespecies AT lindrothrichardl genotypicvariationinplanttraitsshapesherbivorousinsectandantcommunitiesonafoundationtreespecies |